維持管理年報

富士北麓流域下水道 峡 東 流 域 下 水 道 釜 無 川 流 域 下 水 道 桂 川 流 域 下 水 道

令和6年度版

公益財団法人 山梨県下水道公社

目 次

公	社	0)	概	要		• • • • • •	••••	• • • • •	•••	• • • • •	• • • •	• • •	• • • •	••••	•••	• • • • •	• • • •	••••	• • • •	• • • • •		• • • • •	• • • • • •	•••	1
	1		公社	上の概	要		• • • •		•••	• • • • •		• • •		••••	• • • •		• • • •	• • • • • •	• • • •	• • • • •		• • • • •	• • • • • •	•••	2
		(1) 名	7	称				• • • •			•••	• • • •	• • • •			• • • •			• • • • •			• • • • • •	•••	2
		(2)	事務所	f所 [;]	在地	Ţ	• • •				•••	• • • •	• • • •			• • • •			• • • • •			• • • • • •	•••	2
		(3) 討	设立 目	的				•••			• • •		• • • •	• • • •		• • • •			• • • • •				•••	2
		(4)		業				• • • •			•••		• • • •			• • • •	• • • • •		• • • • •				•••	2
		(5)	基本則	崖	(出	損金	金)				•••		• • • • •	• • • •		• • • •	• • • • • •		• • • • •				•••	2
		(6	膏 (平 議	員				• • • •			•••		• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	3
		(7) 衫	L Z	員				• • • •			•••		• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	3
		(8) 刹	且織及	び	職員	配記	置				•••		• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	3
		(9) <i>5</i>	}掌事	務				• • • •			•••		• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	4
	2		事業	きの実	[施]	状況		• • •	• • • •			•••		• • • • •	• • • •		• • • •	• • • • •		• • • • •			• • • • • •	•••	5
		(1) 信	雪士北	麓	、峡	東、	釜	無	川及	とび	桂	<u>Ш</u>	流域	下:	水道	負維	持領	了理	事業	į	•••	• • • • • •	•••	5
		(2) 7	水道	排:	水設	備.	工事	責	任技	支術	者	認定	定登	録	等の)事	業						•••	5
		(3) 7	水道	技	術の	調	查研	究	事業	€			• • • •	• • • •		• • • •	• • • • • •						•••	5
		(4) 7	水道	知	識の	普	及啓	発:	事業	€		• • • •	• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	5
		(5) 4	1共2	水	道水	質	則定	事	業		•••		• • • •	• • • •		• • • •	• • • • • •					• • • • • •	•••	6
		(6) 4	1 共 2	水	道維	持	管理	事	業		•••												•••	6
流均	或下	水	道の)維持	管:	理						•••		• • • •										•••	7
	Ι		流垣	成下水	道	の概	要		• • •			•••												•••	7
	Π		富士	北麓	[流:	域下	水泊	道				•••		• • • •	•••		• • • •							•••	11
		1	惠	き備状	沈							•••		• • • •										•••	12
			(1) 全	体	計画	及で	び現	況			•••		• • • •										•••	12
			(2) 施	:設	整備	状剂	兄				•••		• • • •										•••	16
				① '	富士	北倉	篦浄	化	ヒン	タ	_			• • • •						• • • • •				•••	16
				2	中総	*ポン	ンプ	。場	• 斡	線	及で	が斡	衤線	流:	量計	<u> </u>		• • • • •		• • • • •			• • • • • •	•••	27
		2	邡	拉設運	転	管理	状	兄				•••		• • • •										•••	35
			(1) 機	綾械	設備	運	妘管	理:	状涉	Z			• • • •										•••	35
				1	各部	と備 の	の運	転料	犬沥	2等				• • • • •						• • • • •				•••	35
				2	未使	三用 村	幾器	め	呆守	2		•••		• • • • •						• • • • •				•••	36
				3 1	幾器	計	章状	況				•••		• • • • •						• • • • •				•••	36
			(2) 電	気	設備	運	転管	理:	状涉	2													•••	39
				1 1	電力	使月	用状	況				•••													39
				2	非常	引用多	発電	設(備 運	転	状剂	兄		• • •											39
				3 1	幾器	計	章状	況				•••												•••	39
		3	カ	く質及	びご	汚泥	管 F	理状	況			•••												•••	42
				1) 水								•••			• • • •										42
			,			_ [試馬																			42
						、 艮調 3																			42
						、 、 タン) 斜	果	及 7	ド牛	物	試馬) 斜	果									42
						. 試馬			. •/IF						••••										42
			(管理																		•••	42
			`																						

		(3) その他管理状況	43
		① 放流河川調査結果	43
		② 臭気測定結果	43
Ш		峡東流域下水道	62
	1	整備状況	63
		(1) 全体計画及び現況	63
		(2) 施設整備状況	67
		① 峡東浄化センター	67
		② 中継ポンプ場・幹線及び幹線流量計	80
	2	施設運転管理状況	93
		(1) 機械設備運転管理状況	93
		① 各設備の運転状況等	93
		② 未使用機器の保守	94
		③ 機器故障状況	94
		(2) 電気設備運転管理状況	97
		① 電力使用状況	97
		② 非常用発電設備運転状況	97
		③ 機器故障状況	97
	3	水質及び汚泥管理状況	100
		(1) 水質管理状況	100
		① 水質試験結果	100
		② 幹線調査結果	100
		③ 反応タンク試験結果及び生物試験結果	100
		④ 通日試験結果	100
		(2) 汚泥管理状況	100
		(3) その他管理状況	101
		① 放流河川調査結果	101
		② 臭気測定結果	101
IV		釜無川流域下水道	121
	1	整備状況	122
		(1) 全体計画及び現況	122
		(2) 施設整備状況	126
		① 釜無川浄化センター	126
		② 中継ポンプ場・幹線及び幹線流量計	137
	2	施設運転管理状況	155
		(1) 機械設備運転管理状況	155
		① 各設備の運転状況等	155
		② 未使用機器の保守	156
		③ 機器故障状況	156
		(2) 電気設備運転管理状況	159
		① 電力使用状況	159
		② 非常用発電設備運転状況	159
		③ 機器故障状況	160

	3	水質	及び汚泥管理状況		164
		(1)	水質管理状況 …		164
		1	水質試験結果		164
		2	幹線調査結果		164
		3	反応タンク試験結果	・・・ そ及び生物試験結果 ・ <	164
		4	通日試験結果		164
		(2)	汚泥管理状況 …		164
		(3)	その他管理状況		165
		1	放流河川調査結果		165
		2	臭気測定結果		165
	V Ł	圭川流	域下水道		185
	1	整備	状況		186
		(1)	全体計画及び現況		186
		(2)	施設整備状況 …		190
		1	桂川清流センター		190
		2	中継ポンプ場・幹線	象及び幹線流量計	201
	2	施設	運転管理状況 …		210
		(1)	機械設備運転管理状	況	210
		1	各設備の運転状況等	÷	210
		2	未使用機器の保守		211
		3	機器故障状況		211
		(2)	電気設備運転管理状	況	214
		1	電力使用状況		214
		2	非常用発電設備運転	云状況	214
		3	機器故障状況		214
	3	水質	及び汚泥管理状況		217
		(1)	水質管理状況 …		217
		1	水質試験結果		217
		2	幹線調査結果		217
		3	反応タンク試験結界	是及び生物試験結果	217
		4	通日試験結果		217
		(2)	汚泥管理状況 …		217
		(3)	その他管理状況		217
		1	放流河川調査結果		217
		2	臭気測定結果		218
参	考 資	料			237
	水質	試験等	等実施要領		238

公社の概要

1 公社の概要

令和7年3月31日現在の状況について記載する。

- (1) 名 称 公益財団法人山梨県下水道公社
- (2) 事務所所在地事務局・峡東浄化センター笛吹市石和町東油川字北畑417番地富士北麓浄化センター富士吉田市下吉田東四丁目26番1号釜無川浄化センター南巨摩郡富士川町長澤1790番地桂川清流センター大月市梁川町塩瀬800番地

(3) 設立目的

下水道技術の調査研究、下水道知識の普及啓発、下水道施設の管理運営並びに下水道排水設備工事責任技術者の認定等を行い、もって県及び市町村の下水道行政の推進と県民の健康で文化的な生活に寄与し、公衆衛生の向上及び環境保全に資することを目的とする。

(4) 事 業

- ①下水道技術の調査研究
- ②下水道知識の普及啓発
- ③流域下水道施設の維持管理事業及び当該事業の関連事業
- ④下水道排水設備工事責任技術者の認定、登録等
- ⑤その他この法人の目的を達成するために必要な事業
- **(5) 基本財産**(出捐金) 74,000 千円

山 梨 県37,000 千円市 町 村37,000 千円

(内 訳)

○富士北麓流域関連市町村 ○峡 東 流 域 関 連 市 ○釜 無 川 流 域 関 連 市 町 富士 吉田 市 1,000 千円 甲 府 市 1,000 千円 韮 崎 市 1,000 千円 忍 野 村 1,000 千円 山 梨 市 2,000 千円 南アルプス市 5,000 千円 山 中 湖 村 1,000 千円 笛 吹 市 6,000 千円 甲 斐 市 3,000 千円 富士河口湖町 3,000 千円 甲 州 市 2,000 千円 市 川 三郷 町 2,000 千円 市 川 三郷 町 2,000 千円

〇桂川流域関連市町 富士吉田市

都 留 市 1,000 千円 大 月 市 1,000 千円 上 野 原 市 1,000 千円 西 桂 町 1,000 千円 富 士 川 町 2,000千円 昭 和 町 1,000千円

※富士北麓流域と桂川流域の両方に関連する富士吉田市については、富士北麓流域供用開始時に 出捐している。

(6) 評 議 員

役 職 名	常勤	非 常 勤	計	備考
評 議 員		7	7	
計		7	7	

(7) 役 員

役 職 名	常勤	非 常 勤	計	備考
理 事 長	1		1	
専務理事	1		1	
理事		5	5	
監事		2	2	
計	2	7	9	

(8) 組織及び職員配置

評 議 員 会 評 議 員	- 7名		富士北麓浄化センター所長管理グループ化 学 職 ————— 1名電 気 職 ———— 1名機 械 職 (桂川機械職 1名兼務)臨時職員 ———— 1名
理 事 会 理 事 長 専務理事 — 理 事 — 理 事 — 理 事 — — — — — — — — — —		事務局 事務局長(専務理事兼任) 総務グループ 事務職 — 3名 業務グループ 化学職 — 1名 電気職 — 1名	峡東浄化センター 所長 管理グループ 化学職 — 1名 電気職 — 2名 臨時職員 — 1名
監事	- 2名	機 械 職 ———— 1名 臨時職員 ———— 1名	 金無川浄化センター 所長 管理グループ 化 学 職 — 1名 電 気 職 — 1名 機 械 職 — 1名 臨時職員 — 1名
			桂川清流センター 所長 管理グループ 1名 電気職 — 1名 1名 機械職 — 1名 1名 臨時職員 — 1名

(9) 分掌事務

事 務 局

総務グループ

- ①下水道知識の普及及び啓発に関すること。
- ②公社運営の企画に関すること。
- ③評議員会及び理事会に関すること。
- ④定款、その他規程等の制定及び改廃に関すること。
- ⑤事業計画及び事業報告に関すること。
- ⑥予算、決算及び経理に関すること。
- ⑦文書及び社印に関すること。
- ⑧職員の人事、給与及び福利厚生に関すること。
- ⑨資産の取得、管理及び処分に関すること。
- ⑩物品の調達、管理及び処分に関すること。
- ⑪業務の受託及び委託に関すること。
- ⑩事務所及び関係機関との連絡調整に関すること。
- ⑬その他、他のグループ及び事務所の所掌に属さない事務に関すること。

業務グループ

- ①下水道技術の調査研究に関すること。
- ②下水道知識の普及及び啓発に関すること。
- ③下水道施設の土木関連業務の実施に関すること。
- ④下水道の水質分析等の受託に関すること。
- ⑤流域関連公共下水道の支援に関すること。
- ⑥下水道排水設備工事責任技術者の認定、登録に関すること。
- ⑦公社業務の企画及び実施に関すること。
- ⑧下水道技術者の養成に関すること。
- ⑨事務所の技術的事項の連絡調整及び支援に関すること。
- ⑩下水処理の統計及び調査資料の作成に関すること。
- ⑪関係機関との技術的事項の連絡調整に関すること。
- ⑫その他、他のグループ及び事務所の所掌に属さない技術的業務に関すること。

事務所(浄化センター、清流センター)

管理グループ

- ①下水道技術の調査研究に関すること。
- ②下水道知識の普及及び啓発に関すること。
- ③処理施設及びポンプ施設の維持管理に関すること。
- ④各種機器の保守、点検及び調整に関すること。
- ⑤汚泥の処分に関すること。
- ⑥管路の維持管理に関すること。
- ⑦施設の小規模補修に関すること。
- ⑧水質及び汚泥の測定、分析等に関すること。
- ⑨委託業務の指導、監督に関すること。
- ⑩庁舎の管理に関すること。
- ⑪下水道台帳に関すること。
- ⑩文書及び社印に関すること。
- ③資産の取得、管理及び処分に関すること。
- ④物品の調達、管理及び処分に関すること。
- 15経理に関すること。
- (16)下水道技術者の養成に関すること。
- ⑪その他流域下水道施設の維持管理に必要な業務に関すること。

2 事業の実施状況

令和6年度に実施した主な事業は次のとおりである。

(1) 富士北麓、峡東、釜無川及び桂川流域下水道維持管理事業

ア)流域下水道維持管理業務

富士北麓、峡東、釜無川及び桂川流域下水道の維持管理業務を山梨県から受託し実施した。

受託期間 令和4年4月1日から令和7年3月31日

受託内容 ア 富士北麓、峡東、釜無川及び桂川流域下水道に係る施設(関連する施設設備を 含む。)の運転操作、保守点検、小規模な補修及び改良

イ 下水量等の計量計測、水質及び汚泥成分等の分析

ウ 下水及び汚泥等の処理処分

エ 前記の受託業務に付随する業務

令和6年度各流域下水道流入下水量及び放流水質の状況

	流入下水量	放流水質/BOD	放流水質/SS
富士北麓流域下水道	8,816,695 ㎡/年	2.6 mg/L	$1.7 \mathrm{mg/L}$
峡東流域下水道	10,951,792 m³/年	2.4 mg/L	2.1 mg/L
釜無川流域下水道	19,354,773 m³/年	2.6 mg/L	3.4 mg/L
桂川流域下水道	2,702,965 m³/年	$1.6 \mathrm{mg/L}$	1.8mg/L

イ)流域下水道機器分解点検業務

山梨県流域下水道ストックマネジメント計画に基づく、富士北麓、峡東、釜無川及び桂川流域下 水道の機器分解点検業務を山梨県から受託し実施した。

受託内容 状態監視保全に位置づけられた機器の状態監視、劣化・損傷を把握するための分解 点検、調査等

受託数 4件 対象機器数 14台

(2) 下水道排水設備工事責任技術者認定登録等の事業

下水道の普及促進及び技術者の養成を図るため、下水道排水設備工事責任技術者の認定試験及び更新講習を実施し、認定及び登録並びに登録更新を行った。

更新講習	令和6年6月25~27日、	7月19日、	8月1日	受講者	564名
試験講習	令和6年10月22日			受講者	45名
認定試験	令和6年11月21日			受験者	58名
				合格者	30名

(3) 下水道技術の調査研究事業

下水処理を安定的かつ経済的に行うため、調査研究を実施した。

送風機の運用に関する調査について

下水道施設における非化石電気の活用に関する調査について

釜無川浄化センターNo.2 脱水機の運転について

反応タンク更新工事に伴う処理機能の移行に関する事前調査について

(4) 下水道知識の普及啓発事業

ア)施設見学者の案内及び説明

年間を通じて浄化センター及び清流センターを一般開放し、小学校や各種団体の依頼に対して、 施設案内及び説明を行い、下水道知識の普及啓発に努めた。

公社の概要

見学者

富士北麓浄化センター822名峡東浄化センター596名釜無川浄化センター925名桂川清流センター182名合計2,525名

イ)下水道出前教室

処理場の見学に来られない小学生等を対象に実施した。 実施回数 23回 参加者 901名

ウ)下水道まつり

下水道事業に対する地域住民の協力に感謝するとともに、今後一層の事業推進の必要性を県民に広くアピールするため、釜無川浄化センターにおいて「第36回下水道まつり」を開催した。

釜無川浄化センター 令和6年9月8日(日) 来場者数 1,400名

エ)下水道ポスターコンクール

地域住民の下水道事業に対する認識を高め、下水道の普及拡大を推進することを目的として県内 の小学生(4~6年生)を対象に下水道ポスターコンクールを実施した。

第35回下水道ポスターコンクール 応募校数 90校 応募作品数 1,641点 表彰式 令和6年11月24日(日) 入賞者 59名

才)講習会等

市町村の下水道担当職員の技術水準の向上に寄与するため、下水道管理担当者会議と管路内及びマンホール修繕等の現場見学会を開催した。

カ) 県及び市町村イベント等への参加協力

県及び市町村からの依頼によりイベント等への参加協力を実施した。 甲州富士川まつり実行委員会主催の甲州富士川まつり 令和6年11月10日(日)

キ)その他の普及啓発活動

公共施設等における下水道PRパネル・ポスターコンクール入賞作品の展示を実施した。

(5) 公共下水道水質測定事業

計量証明事業の登録を活用して、山梨県流域下水道維持管理要綱に基づく公共下水道接続点等の水質検査を、流域関連市町村からの受託により実施した。

各流域合計受託市町村 19市町村 測定箇所 177箇所

(6) 公共下水道維持管理事業

流域関連市町村を支援するため、公共下水道施設の維持管理業務及び技術援助業務を市町村からの 受託により実施した。

笛吹市公共下水道 マンホールポンプ場技術援助業務

流域下水道の維持管理

I 流域下水道の概要

流域下水道の概要

流域下水道全体計画概要を表 1-1 に、流域下水道全体計画図を図 1-1 に、維持管理進捗状況を表 1-2 に示す。

表 1-1 流域下水道全体計画概要

流域名	富士北麓流域下水道	峡東流域下水道	釜無川流域下水道	桂川流域下水道
関連市町村	富 士 吉 田 市 忍 野 村 山 中 湖 村 富士河口湖町	甲 府 市 山 梨 市 笛 吹 市 甲 州 市		富士吉留市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市
			昭 和 町	
排除方式	分 流 式	分 流 式	分 流 式	分 流 式
事業年度	昭和50年~令和13年	昭和52年~令和17年	昭和61年~令和17年	平成5年~令和13年
計画面積	4, 466. 5ha	6, 343. 5ha	8, 047. 1ha	1, 692. 6ha
計画人口	70, 450 人	106,060 人	213, 090 人	43, 260 人
計画処理水量	49,738 m³∕∃	74,530 m³/日	143,380 ㎡/日	23,759 m³∕∃
幹線延長	33.5km	63.7km	77.0km	47.9km
ポンプ場	3 箇所	3 箇所	8 箇所	2 箇所
全体事業費	271 億円	615 億円	953 億円	689 億円
	昭和61年7月	平成元年7月	平成5年4月	平成 16 年 4 月
備考	一部供用開始	一部供用開始	一部供用開始	一部供用開始

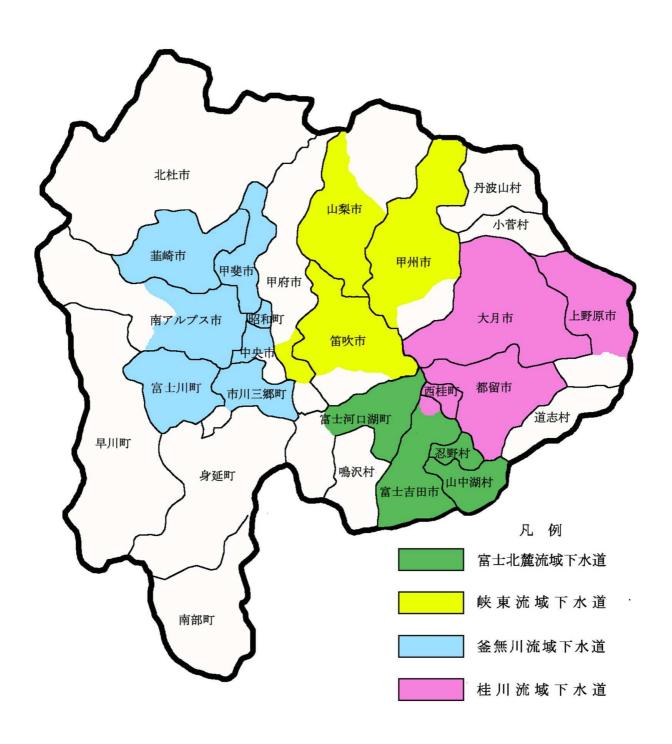


図1-1 流域下水道全体計画図

表 1 - 2 維持管理進捗状況

							• •		л-р						
流域名		項	目	年月	単位	平成27年度	平成28年度	平成29年度	平成30年度	令和元年度	令和2年度	令和3年度	令和4年度	令和5年度	令和6年度
	t	供 月	月開始了		女 市町村	4	4	4	4	4	4	4	4	4	4
富	. 1	供	用幹	線延長	ŧ km	29. 3	29. 3	32. 2	32. 2	32. 2	32. 2	32. 2	32. 2	32. 2	32. 2
士	7	ポ	ンプ	場	箇所	3	3	3	3	3	3	3	3	3	3
北		流	入下	水量	₫ m³/年	7, 852, 719	7, 848, 885	8, 215, 930	8, 401, 829	8, 405, 358	7, 639, 200	7, 779, 915	8, 143, 938	8, 387, 325	8, 816, 695
麓	· [電	力 使	用量	₫ kWh/年	2, 374, 962	2, 460, 426	2, 555, 262	2, 552, 832	2, 553, 930	2, 335, 656	2, 455, 128	2, 483, 184	2, 596, 416	2, 541, 648
	月	脱ス	くケージ	キ発生量	₫ t/年	4,096	3, 981	3, 970	4, 236	4, 252	3, 379	3, 449	3, 624	3, 929	4, 229
	t	共	用開	始市数	女 市	4	4	4	4	4	4	4	4	4	4
		共	用幹	線延長	ŧ km	59. 5	59. 5	61.8	61.8	61.8	61. 8	61.8	61.8	61.8	61.8
峡	7	ポ	ンプ	場数	箇所	8(5)	8(5)	9(6)	9(6)	9(6)	9(6)	9(6)	9(6)	9(6)	9(6)
東	ì	流	入下	水量	₫ m³/年	10, 798, 873	10, 629, 068	10, 900, 948	10, 876, 602	10, 921, 284	11, 019, 786	10, 546, 212	10, 572, 539	10, 508, 115	10, 951, 792
	1	電	力 使	用	₫ kWh/年	3, 852, 597	3, 784, 127	3, 731, 920	3, 651, 421	3, 647, 193	3, 675, 767	3, 681, 984	3, 658, 464	3, 594, 528	3, 616, 896
	月	脱ス	くケージ	キ発生量	₫ t/年	6, 933	6, 690	6, 859	6, 883	6, 804	6, 654	6, 966	7, 049	7, 314	7, 222
	1	供 丿	用開始	市町券	大 市町	7	7	7	7	7	7	7	7	7	7
		共	用幹	線延長	₹ km	78. 7	75.0	75. 0	75. 0	75. 0	75. 0	75. 0	75. 0	75. 0	76. 4
釜無		ポ	ンプ	場	歯所	14(6)	14(6)	14(6)	14(6)	14(6)	14(6)	14(6)	14(6)	14(6)	14(6)
川	ť	流	入下	水量	₫ m³/年	17, 257, 237	16, 885, 649	17, 323, 909	17, 433, 682	17, 860, 879	19, 176, 968	18, 509, 110	18, 554, 738	19, 010, 662	19, 354, 773
	1	電	力 使	用量	롾 kWh/年	4, 853, 232	4, 966, 104	4, 911, 384	4, 789, 992	4, 909, 848	5, 092, 440	4, 975, 560	5, 051, 760	5, 002, 632	4, 946, 424
	月	脱ス	くケージ	キ発生量	₫ t/年	13, 964	14, 269	14, 568	15, 075	14, 742	15, 103	15, 301	15, 829	14, 789	15, 040
	t	供 丿	用開始	市町券	市町	5	5	5	5	5	5	5	5	5	5
		共	用幹	線延長	ŧ km	42.8	42.8	43.6	44. 1	44. 1	44. 1	44. 1	44. 1	44. 1	44. 3
桂	Z	ポ	ンプ	場	箇所	2	2	3(1)	4(2)	4(2)	4(2)	4(2)	4(2)	4(2)	4(2)
JII	ť	流	入下	水量	₫ m³/年	2, 259, 368	2, 262, 343	2, 339, 514	2, 378, 968	2, 432, 936	2, 516, 778	2, 576, 303	2, 611, 066	2, 661, 960	2, 702, 965
	1	電	力使	用	₫ kWh/年	1, 629, 048	1, 620, 000	1, 656, 552	1, 661, 160	1, 664, 040	1, 675, 344	1, 674, 816	1, 670, 904	1, 674, 288	1, 690, 752
	月	脱ス	ケーニ	キ発生量	₫ t/年	1, 457	1, 502	1, 570	1, 623	1, 628	1, 573	1, 663	1, 645	1, 614	1, 650

^{*} 過去10年間のデータを記載した。

^{*} ポンプ場数記載方法は、総ポンプ場数(マンホールポンプ場数)である。

II 富士北麓流域下水道

1 整備状況

(1) 全体計画及び現況

富士北麓流域下水道は、昭和61年7月の供用開始より39年目を迎えている。

全体計画処理水量は 49,738 ㎡/日、事業計画水量は 38,174 ㎡/日であり、幹線は 32.2 kmが供用開始となっている。

供用開始区域内の面積は 2,479.95ha、人口は 51,263 人となっており、流入下水量は令和 6 年度平均で 24,155 ㎡/日である。

富士北麓流域下水道の全体計画及び現況を表2-1に、富士北麓流域下水道事業計画図を図2-1 に、関連公共下水道市町村別水洗化状況を表2-2に、市町村別流入下水量を表2-3に示す。

表2-1 全体計画及び現況

項目	全体	計画	事業	計画	供用開	始区域	
	(計画年次:昭和5	50年~令和13年)	(計画年次:昭和	50年~令和7年)			
	計画面積	計画人口	計画面積	計画人口	面積	人口	
市町村名	(ha)	(人)	(ha)	(人)	(ha)	(人)	
富士吉田市	1, 512. 9	31, 760	829. 9	21, 490	626. 68	19, 050	
忍 野 村	611.0	12, 370	585. 1	11, 890	458. 03	7, 882	
山中湖村	508. 2	3, 040	468.7	2, 950	473. 66	3, 639	
富士河口湖町	1,834.4	23, 280	1, 188. 7	17, 700	921. 58	20, 692	
合 計	4, 466. 5	70, 450	3, 072. 4	54, 030	2, 479. 95	51, 263	
計画処理水量 (日最大)	49, 738	m³/日	38, 174	m³/日	_	-	
下水排除方式	分流式						
処 理 方 式			標準活性	上汚泥法			
幹線延長	33.	5 km	33.	5 km	管理延長 32.2 km		
ポンプ場数	3 筐		3 筐		3 箇所		

[※]供用開始区域の面積、人口及び幹線延長は、令和7年4月1日現在の値を示す。



図2-1 富士北麓流域下水道事業計画図

表 2 - 2 関連公共下水道市町村別水洗化状況

					令	和 6 年 度	末			
	項目市町村名		IJ	頁目	行政	処理区域	水洗化	普及率	水洗化率	接続戸数
市			人口	内人口	人口					
					A (人)	В (人)	C (人)	B/A (%)	C/B (%)	累計 (戸)
富	士	吉	田	市	39, 288	19, 050	15, 454	48. 5	81. 1	6, 492
忍		野		村	9, 658	7, 882	6, 044	81.6	76. 7	3, 177
Щ	中	į	湖	村	5, 796	3, 639	3, 457	62.8	95. 0	1, 371
富	士剂	可 口	1	月町	26, 152	20, 692	20, 122	79. 1	97. 2	8, 435
		計			80, 894	51, 263	45, 077	63. 4	87. 9	19, 475

- 注1) 行政人口は、令和7年3月31日現在の住民基本台帳の人口を示す。
- 注2) 処理区域内人口は、供用開始区域内人口を表し、令和7年4月1日公示分を含む。
- 注3) 富士吉田市の行政人口については、桂川流域分を除いた人口を示す。
- 注4) 富士河口湖町の行政人口については、旧上九一色村南部区域を除いた人口を示す。

表 2 - 3 市町村別流入下水量

					表 2 -	3 市町	丁村別流	入下水量	量				(単位: m	³)
市町村名	4月	5月	6 月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合 計	月平均
富士吉田市	169, 364	162, 676	179, 034	198, 919	198, 660	198, 037	209, 075	202, 460	224, 218	229, 740	200, 885	203, 858	2, 376, 926	198, 077
忍野村	80, 699	89, 326	81, 111	82, 153	87, 339	77, 709	74, 330	73, 483	94, 266	94, 863	92, 135	93, 731	1, 021, 145	85, 095
山中湖村	135, 716	138, 349	132, 196	142, 117	171, 277	143, 406	138, 361	130, 103	145, 135	158, 250	149, 066	167, 278	1, 751, 254	145, 938
富士河口湖町	286, 295	303, 584	285, 702	314, 436	344, 073	314, 989	295, 731	291, 660	303, 395	324, 868	297, 254	305, 383	3, 667, 370	305, 614
合 計	672, 074	693, 935	678, 043	737, 625	801, 349	734, 141	717, 497	697, 706	767, 014	807, 721	739, 340	770, 250	8, 816, 695	734, 725
日平均	22, 402	22, 385	22, 601	23, 794	25, 850	24, 471	23, 145	23, 257	24, 742	26, 056	26, 405	24, 847	年間日平均	24, 155

(2) 施設整備状況

施設整備状況については、令和7年3月までに富士北麓浄化センターにおける曝気沈砂池設備が更新され、供用開始している。

令和6年度末の状況については、以下のとおりである。

①富士北麓浄化センター

水処理使用可能池数としては、最初沈殿池 2. 5/3池、反応タンク 5/6池、最終沈殿池 2. 5/3池となっており、処理能力は 42,100 m/日である。

富士北麓浄化センターの全体平面図を図2-2に、フローシートを図2-3に、建築構造物概要を表2-4に、水処理機械設備概要を表2-5に、汚泥処理機械設備概要を表2-6に、電気設備概要を表2-7に、単線結線図を図2-4に、システム系統図を図2-5に示す。

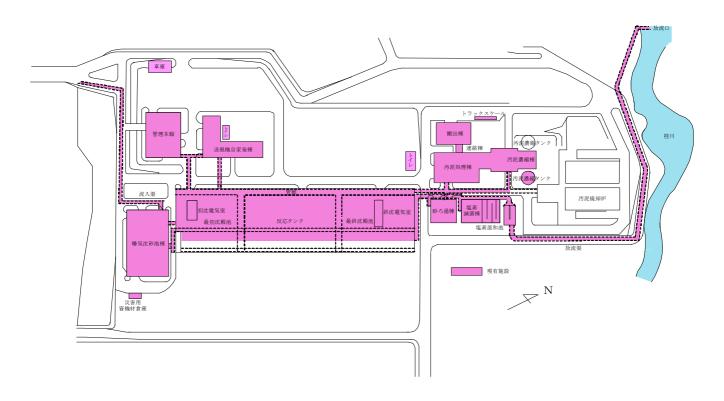


図2-2 富士北麓浄化センター全体平面図

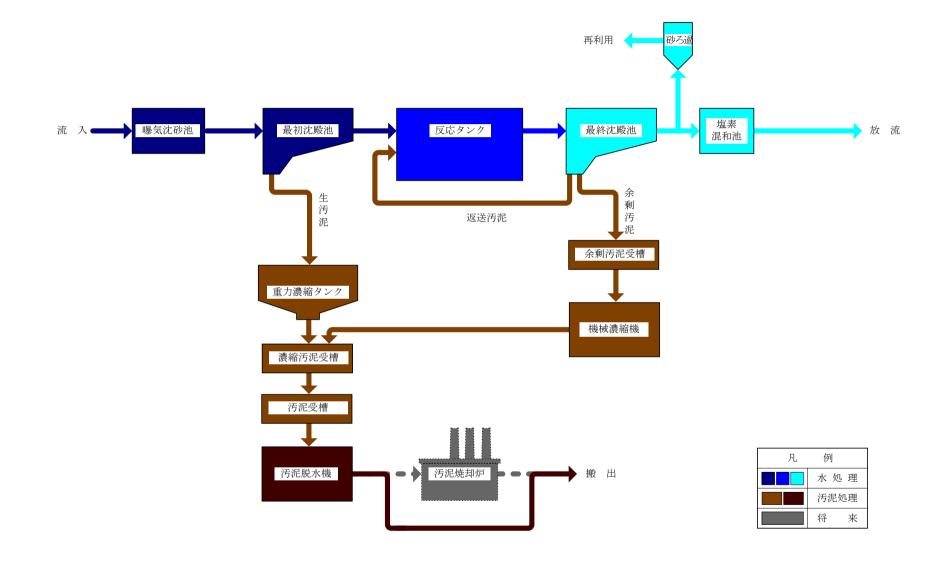


図2-3 富士北麓浄化センターフローシート

表2-4 富士北麓浄化センター建築構造物概要

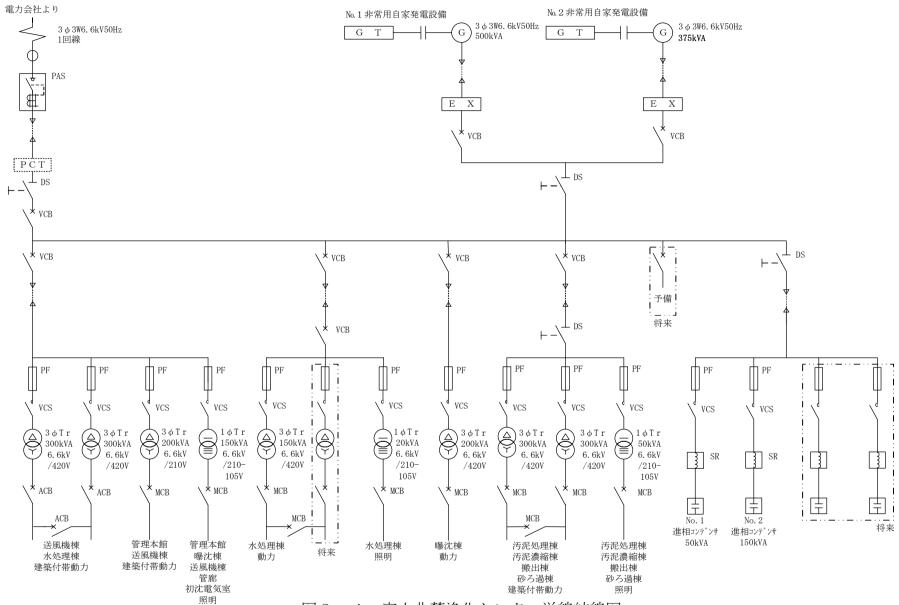
項目	
施設	構造及び概要
ле ix	RC造 地下1階、地上4階
	建築面積
管 理 本 館	延床面積 2,833㎡
	事務室、水質試験室、会議室、中央管理室、換気ファン室、空調機械室、設計室、その他
	RC造 地下1階、地上1階
曝気沈砂池棟	
	建築面積 1,776㎡
	延床面積 1,939㎡
	スクリーン室、曝気沈砂池室、脱臭機室、搬出作業室、電気室、その他
^^ 덤 \\	RC造 地下1階、地上3階
	建築面積 873㎡ x x x x x x x x x x x x x x x x x x x
自家発棟	延床面積 1,947㎡
	送風機室、エアフィルター室、自家発電機室、換気ファン室、電気室、ポンプ室、その他
	RC造 地上1階
	建築面積 124㎡
電気室	延床面積 122㎡
	電気室、スカム分離機室、階段室
	RC造 地上1階
	建築面積
電 気 室	延床面積 192m ²
	電気室
	RC造 地上1階
塩素滅菌棟	建築面積
	延床面積 122 m ²
	塩素滅菌室
	RC造 地下1階、地上1階
 砂 ろ 過 棟	建築面積 107 m²
	延床面積 438 m²
	ポンプ室、電気室、その他
	RC造 地下1階、地上2階
汚泥濃縮棟	建築面積 95 m²
17 7亿 6辰 州11 1末	延床面積 297 m²
	ポンプ室、搬出室、スクリーン室、換気ファン室、脱臭機室、その他
	RC造 地下1階、地上2階
	建築面積 1,380 m²
汚泥処理棟	延床面積 3,228 m²
	ポンプ室、脱臭機室、スクリーン室、脱水機室、遠心濃縮機室、遠心脱水機室、
	コンベヤ室、換気ファン室、電気室、搬出入作業室、その他
	RC造 地上2階
Lón. III 1-t-	建築面積 433 m ²
搬出棟	延床面積 510㎡
	搬出室、脱臭機室、その他

表2-5 富士北麓浄化センター水処理機械設備概要

		1
項目 設備	構造及び能力	現有設備
	幅5.3m×深3.6m×長10m 164m³(1池当たり)	1 池
	スクリーン室流入ゲート (外ネジ式鋳鉄製)	4 門
	幅0.9m×高1.2m	
	曝気沈砂池流入ゲート (外ネジ式鋳鉄製)	2 門
	幅 1 m×高1. 2m	
	粗目スクリーン (手掻きバースクリーン)	2 基
	水路幅0.9m×水路深3m×目幅100mm	
	細目スクリーン自動除塵機(間欠式前面掻揚型)	
	水路幅1.5m×水路深3m×目幅20mm×2.2kW	1 基
	水路幅1.5m×水路深3m×目幅20mm×1.5kW	1 基
	No.1 し渣搬出機 (傾斜トラフ形ベルトコンベヤ)	1 基
	幅500mm×長17.8m 輸送量24㎡/h×20m/min×1.5kW	
曝気沈砂池	No.1 沈砂搬出機 (フライト式ダブルチェーンコンベヤ)	1 基
設 備	フライト幅500mm 輸送量1.22㎡/h×3m/min×1.5kW	
	し渣洗浄脱水機(スクリュー式脱水機)	1 基
	処理量0.4 m³/h×2.2kW	
	No.1 集砂装置 (エジェクター式集砂装置)	1 基
	幅5.3m×長10m	
	揚砂ポンプ (着脱式水中渦流ポンプ)	1 台
	$\phi 150 \times 1.5 \mathrm{m}^3 / \mathrm{min} \times 23 \mathrm{m} \times 22 \mathrm{kW}$	
	集砂水ポンプ(着脱式水中汚水ポンプ)	2台(予備1台)
	φ 150×1.5 m³/min×19 m×11kW	
	沈砂分離機(分離槽付スクリューコンベヤ)	1 基
	1.5 m³∕min×2.2kW	
	沈砂池散気装置 (散気筒型散気装置)	2 基
	φ80×10個/基	
	幅7.3m×長28.5m×深3.3m×2水路 1,373㎡ (1池当たり)	2 池
	幅7.3m×長23.5m×深3.3m×2水路 1,132㎡ (1池当たり)	0.5 池
	初沈汚泥ポンプ (無閉塞型汚泥ポンプ)	2台(予備1台)
	$\phi 100 \times 1.0 \mathrm{m}^3 / \mathrm{min} \times 8 \mathrm{m} \times 5.5 \mathrm{kW}$	
	初沈汚泥掻寄機(フライト付ダブルチェーンコンベヤ)	
	幅3.0m×機長23.4m×0.6m/min×0.75kW(1水路1駆動)	4 基
最初沈殿池	幅3.0m×機長18.3m×0.6m/min×0.4kW (1水路1駆動)	1 基
設備	初沈スカムスキマー (空気作動回転式パイプスキマー)	4 基
以用	φ250×幅3.65m/3.35m(1水路1駆動)	
	初沈スカムスキマー(電動回転式パイプスキマー)	1 基
	φ300×幅7.60m×0.2kW(1水路1駆動)	
	スカム分離機(回転ドラムスクリーン)	1 基
	処理能力3.6㎡/min×目幅3mm×1.5kW	
	分離液排水ポンプ	2 台
	$\phi 150 \times 1.8 \mathrm{m}^3 / \mathrm{min} \times 8 \mathrm{m} \times 7.5 \mathrm{kW}$	

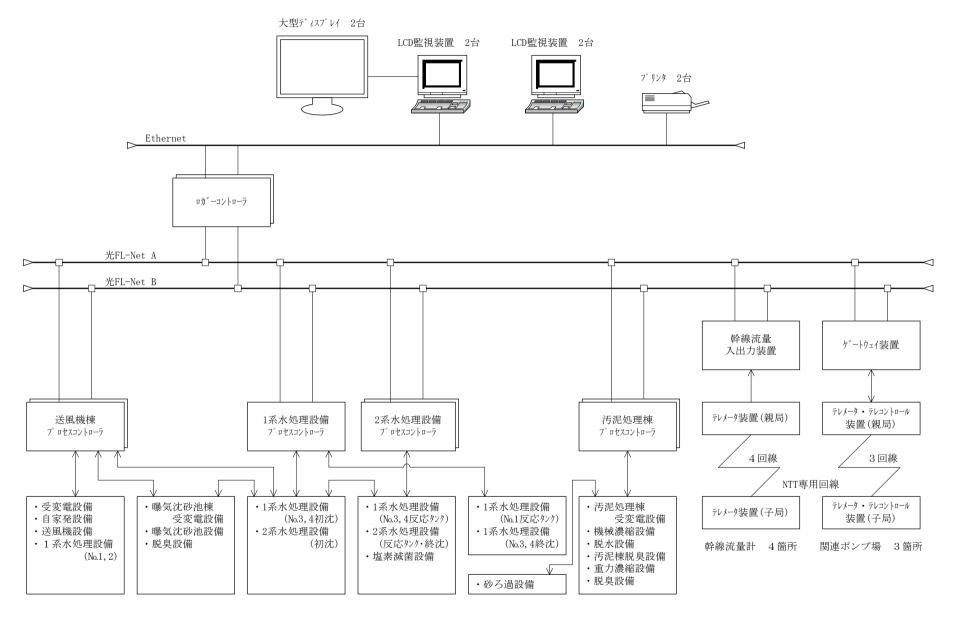
項目	1# 14 T7 ~10 At _ L	TD -	-n. /#:
設備	構造及び能力	現有	設 備
	幅7.6m×長81.5m×深4.8m 2,812㎡(1池当たり)	5	池
	No.1-1反応タンク散気装置		
	水中撹拌機	5	台
	送風量2.6Nm³/min×酸素供給量10kgO ₂ /h×3.7kW		
	全面式散気装置	508	枚
	散気量100 L/min/枚		
	No.1-2反応タンク散気装置 双曲面形撹拌・曝気機		
		1	4
	送風量3.9Nm ³ /min×酸素供給量14.5kgO ₂ /h×3.7kW	2	
	全面式散気装置	783	
	散気量20~50 L / min / 枚		
	No.1-3反応タンク散気装置		
反応タンク 設 備	旋回流式散気板(固定式)	260	枚
取 加	散気量80~100 L/min/枚		
	No.1-4反応タンク散気装置		
	旋回流式散気板(固定式)	260	枚
	散気量80~100 L / min / 枚		
	No.2-1反応タンク散気装置		
	双曲面形撹拌・曝気機 送風量4.25N m³/min×酸素供給量20kg O ₂ /h×5.5kW	1	4
	送風量4.25N m/ min/ 酸系供給量20kg O ₂ / n/5.5kw 送風量3.08N m³/min×酸素供給量14.5kg O ₂ / h×3.7kW	$\begin{array}{c c} 1 \\ 2 \end{array}$	
	全面式散気装置	783	
	散気量20~40 L / min / 枚		
	フロススプレーポンプ(片吸込渦巻ポンプ)		
	$\phi 150/\phi 125 \times 2.1 \mathrm{m}^3/\mathrm{min} \times 24 \mathrm{m} \times 15 \mathrm{kW}$	1	台
	$\phi 150/\phi 125 \times 4.1 \mathrm{m}^3/\mathrm{min} \times 26 \mathrm{m} \times 30 \mathrm{kW}$	1	台
	送風機 (増速単段ターボブロワ)		
送風機設備	$\phi 250/\phi 200 \times 55 \mathrm{m}^3/\mathrm{min} \times 58.8 \mathrm{kPa} \times 90 \mathrm{kW}$	2	
	φ 300/ φ 250×76 m³/min×56. 8kPa×110kW		台
	幅7.3m×長46.4m×深3m×2水路 2,032m³(1池当たり)	2.5	池
	終沈汚泥掻寄機(フライト付ダブルチェーンコンベヤ) 幅3.0m×機長41.3m×0.3m/min×0.75kW(1水路1駆動)	4	甘
	幅3.0m×機長41.7m×0.3m/min×0.4kW (1水路1駆動)	1	
	終沈スカムスキマー(空気作動回転式パイプスキマー)	4	
	φ 250×幅3.65m/3.35m (1 水路 1 駆動)		A
	終沈スカムスキマー(電動回転式パイプスキマー)	1	基
最終沈殿池	φ300×幅7.20m×0.2kW(1水路1駆動)		
設 備	返送汚泥ポンプ (吸込スクリュー式汚泥ポンプ)		
	$\phi 200 / \phi 150 \times 3.0 \mathrm{m}^3 / \mathrm{min} \times 6 \mathrm{m} \times 7.5 \mathrm{kW}$	2	
	$\phi 200 / \phi 200 \times 5.3 \text{m}^3 / \text{min} \times 6 \text{m} \times 15 \text{kW}$	1	
	$\phi 250 \times 6.0 \text{m}^3 / \text{min} \times 6 \text{m} \times 11 \text{kW}$	4	
	余剰汚泥ポンプ (無閉塞汚泥ポンプ)	2	台
	φ100×1.0㎡/min×9m×5.5kW 余剰汚泥ポンプ (吸込スクリュー式汚泥ポンプ)	2	4
	未来 15 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /		
	塩素混和池 幅2.5m×96m×3m 720m³(1池当たり)	1	洲
	次亜塩注入ポンプ(プランジャ駆動ダイヤフラム式)	2台(子	•
	$\phi 15 \times (0.04 \sim 0.99) \text{ L/min} \times 1.0 \text{MPa} \times 0.4 \text{kW}$		viii
塩素滅菌設備		1	台
	φ15× (0.008~0.097) L/min×1.0MPa×0.2kW		
	次亜塩貯留タンク	2	基
	容量 3 ㎡		

項目 設備	構 造 及 び 能 力	現有設備
砂ろ過設備	砂ろ過水槽 幅4.5m×長3.7m×深 約3.0m 約50㎡ (1槽当たり) 幅4.5m×長7.7m×深 約3.0m 約104㎡ (1槽当たり) 砂ろ過塔 (移床式上向流砂ろ過器) 19.2㎡/h 56.3㎡/h 原水送水ポンプ (片吸込渦巻ポンプ) φ65/φ50×0.32㎡/min×15m×2.2kW	2 槽 1 槽 2 塔 2 塔 2 台
	φ100/φ80×1.1㎡/min×13m×5.5kW 砂ろ過送水ポンプ (片吸込渦巻ポンプ) φ125/φ100×2.2㎡/min×10m×5.5kW φ150/φ125×3.6㎡/min×10m×11kW 高架水槽揚水ポンプ (片吸込渦巻ポンプ) φ125/φ100×2.7㎡/min×31m×22kW	2 台 2 台 1 台 2 台
	曝気沈砂池棟 脱臭ファン (FRPターボファン) φ750×340㎡/min×2.94kPa×30kW	1 台
	薬液洗浄塔(立型2液接触式充填塔) 処理風量340㎡/min	1 塔
脱臭設備	薬液循環ポンプ	2 台 1 台 1 岩 1 塔


表 2 - 6 富士北麓浄化センター汚泥処理機械設備概要

項目	構造及び能力	租 右 弛 借
設備		現有設備
	汚泥スクリーン(回転ドラム式スクリーン) 処理能力 1 m²/min× 5 mm× 0. 4kW	1 基
重力濃縮設備	スクリーンかす脱水機(スクリュー式脱水機)	1 基
	処理量0.25 t / h × 2.2kW スクリーンかすホッパー(電動式鋼鉄製)	1 基
	容量 2 m³×0.75kW×2	
	重力濃縮タンク φ8.5m×深3.0m 170㎡(1槽当たり)	1 槽
	汚泥掻寄機 (中央駆動懸垂型)	1 基
	φ8.5m×3m×周速度2.3m/min×0.4kW 濃縮汚泥移送ポンプ(吸込スクリュー付汚泥ポンプ)	1 台
	$\phi 100 \times 1 \text{ m}^3/\text{min} \times 2 \text{ m} \times 2.2 \text{kW}$	
	汚泥スクリーン(回転ドラム式スクリーン) 処理能力 2 m²/min× 4 mm× 0. 75kW	1 基
	スクリーンかす脱水機	1 基
	処理量0.26 t ∕ h ×2.2kW 余剰汚泥受槽	2 槽
	幅5.5m×長3.5m×深 約2.6m 約50㎡(1槽当たり)	
	余剰汚泥受槽撹拌機(立軸2段パドル形撹拌機) 7.5kW	2 基
	濃縮機給泥ポンプ (一軸ネジ式ポンプ)	
	$\phi 100 \times (10 \sim 24) \text{ m}^3 / \text{h} \times 20 \text{m} \times 5.5 \text{kW}$ $\phi 125 \times (10 \sim 30) \text{ m}^3 / \text{h} \times 20 \text{m} \times 7.5 \text{kW}$	2 台 1 台
	ベルト濃縮機(ベルト型ろ過濃縮機)	
	│ 処理能力15㎡/h 動力3.6kW │ 処理能力15㎡/h 動力2.25kW	1 台 1 台
	遠心濃縮機(横型連続遠心濃縮機)	1 台
機械濃縮設備	処理能力15 m²/ h 動力(駆動用/差動用)22/5.5kW 濃縮汚泥受槽	
	幅5.1m×長3.7m×深 約2.5m 約47㎡(1槽当たり)	1 槽
	幅5.5m×長4.2m×深 約2.5m 約58㎡(1槽当たり) 幅5.2m×長4.2m×深 約2.5m 約55㎡(1槽当たり)	1 槽 1 槽
	濃縮汚泥受槽撹拌機(立軸2段パドル形撹拌機)	3 基
	7.5kW 濃縮汚泥移送ポンプ(一軸ネジ式ポンプ)	2 台 (予備1台)
	$\phi 100 \times 15 \text{m}^3 / \text{h} \times 20 \text{m} \times 5.5 \text{kW}$	
	薬品定量フィーダー(容積式定量フィーダー) 0.1~0.4L/min×0.2kW	2 台
	薬品溶解タンク(鋼板製円筒立形)	2 基
	有効容量 1.5㎡ 薬品溶解タンク用撹拌機(立軸2段プロペラ式)	2 台
	0.75kW	
	薬品供給ポンプ (一軸ネジ式ポンプ) $\phi 20 \times (1.2 \sim 3.7)$ L/min×20m×0.4kW	2台(予備1台)
	汚泥受槽	1.44-
	幅5.4m×長6.0m×深 約3.7m 約120㎡(1槽当たり) 幅4.9m×長4.8m×深 約3.7m 約87㎡(1槽当たり)	1 槽 1 槽
	汚泥受槽撹拌機(立軸2段パドル形撹拌機)	2 基
ᄜᄼᆚᄼᆖᇚᅛᆇ	7.5kW 脱水機給泥ポンプ(一軸ネジ式ポンプ)	
脱水設備	$\phi 125 \times (7.5 \sim 22.5)$ m ³ /h×22m×7.5kW	1 台
	φ100× (7.5~18.0) m³/h×40m×7.5kW 汚泥脱水機(ロータリープレス脱水機)	1 台 1 基
	処理能力15 m³∕h 動力12.5k₩	
	遠心脱水機(直胴型遠心脱水機) 処理能力15㎡/h 動力(駆動用/差動用)37/7.5kW	1 基
<u> </u>	The state of the s	1

項目		
設備	構造及び能力	現有設備
	No.1-1ケーキコンベヤ(水平トラフ形ベルトコンベヤ) 幅0.5m×長14m 輸送量20 t / h × 1.5kW	1 台
	No.1-2ケーキコンベヤ (傾斜トラフ形ベルトコンベヤ)	1 台
	幅0.5m×長3m 輸送量24㎡/h×0.75kW No.1-3ケーキコンベヤ(水平トラフ形ベルトコンベヤ)	1 台
	幅0.5m×長3.5m 輸送量24m³/h×1.5kW	
	No.2ケーキコンベヤ(傾斜ベルトコンベヤ) 幅0.5m×長17.7m 輸送量24㎡/h×1.5kW	1 台
	No.3ケーキコンベヤ (傾斜無軸スクリューコンベヤ) ϕ 455×長8.8m 輸送量23.9㎡/h×7.5kW	1 台
	No.4ケーキコンベヤ (傾斜無軸スクリューコンベヤ)	1 台
脱水設備	φ455×長6.9m 輸送量23.9㎡/h×11kW 脱水ケーキホッパー(鋼板製角形カットゲート)	
70 71 BY VIII	容量 10 m ³	1 基
	容量 10 m ³ 1.5kW×2台(モートルシリンダ) 薬品定量フィーダー(容積式定量フィーダー)	1 基
	0.75~3.0L/min×0.4kW	1 台
	1.2~4.0L/min×0.4kW 薬品溶解タンク (鋼板製立円筒タンク)	1 台 2 基
	有効容量 9㎡ (大村9冊 ※ 15 ~ 15 ~ 15 ~ 15 ~ 15 ~ 15 ~ 15 ~ 15	0 /2
	薬品溶解タンク用撹拌機(立軸2段パドル形) 5.5kW	2 台
	薬品供給ポンプ(一軸ネジ式ポンプ)	1 /2
	$ \phi 50 \times (1.26 \sim 3.84) \text{ m} / \text{h} \times 20 \text{m} \times 1.5 \text{kW} \phi 50 \times (1.3 \sim 3.8) \text{ m} / \text{h} \times 25 \text{m} \times 2.2 \text{kW} $	1 台 1 台
	汚泥濃縮棟	
	脱臭ファン(FRP製片吸込ターボファン) φ320×22㎡/min×2.2kW	2 台
	活性炭吸着塔(FRP製上向流式)	1 塔
	22㎡/min 生物脱臭塔(FRP製充填式生物脱臭塔)	1 塔
	22 m³/min	
	汚泥処理棟 脱臭ファン (ターボファン)	
脱臭設備	$\phi 375 \times 50 \mathrm{m}^3 / \mathrm{min} \times 5.5 \mathrm{kW}$	1 台
	φ 250×45㎡/min×7.5kW 生物脱臭塔 (FRP製充填式生物脱臭塔)	1 台 1 塔
	90 m³/min	
	活性炭吸着塔(FRP製立形2層式) 処理風量 100㎡/min	1 塔
	脱臭ファン (ターボファン)	1 台
	φ 375×35㎡/min×3.7kW 活性炭吸着塔(FRP製上向流式)	1 塔
	処理風量 35 m³/min	·
	分離液貯留槽 幅6.1m×長4.8m×深 約2.7m 約79㎡(1槽当たり)	1 槽
	分離液移送ポンプ	2 台
スの山毛母	φ 125/φ 100×1. 2㎡/min×15. 0m×7. 5kW 雑排水槽	1 槽
その他設備	幅2.5m×長3.7m×深 約2.2m 約20m (1槽当たり) 雑排水圧送ポンプ	
	雑排水圧送ホンフ φ125/φ100×1.0㎡/min×15.0m×5.5kW	2 台
	トラックスケール(マルチロードセル方式)	1 基
	秤量30 t 幅3,000mm×長12,000mm	


表2-7 富士北麓浄化センター電気設備概要

設備名称	形 式 及 び 仕 様	現有設備
受 電 設 備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 1,970kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
変電設備	モールド形乾式変圧器 動力用 3 φ 3 W×6,600 V / 420 V×200kVA " 3 φ 3 W×6,600 V / 420 V×300kVA " 3 φ 3 W×6,600 V / 420 V×150kVA 電灯用 1 φ 3 W×6,600 V / 210 V - 105 V×150kVA " 1 φ 3 W×6,600 V / 210 V - 105 V×50kVA " 1 φ 3 W×6,600 V / 210 V - 105 V×20kVA	2 4 4 1 1 1 1 1 1 1 1
高圧進相コンデンサ	3 ϕ 3 W×6, 600 V×150kVA 3 ϕ 3 W×6, 600 V× 50kVA	1台 1台
直流電源装置	送 風 機 棟 200Ah×54セル 長寿命制御弁式据置鉛蓄電池 汚 泥 棟 100Ah×54セル 長寿命制御弁式据置鉛蓄電池	1式 1式
交流無停電電源装置	送 風 機 棟 200Ah×54セル 長寿命制御弁式据置鉛蓄電池 終沈電気室 200Ah×54セル 長寿命制御弁式据置鉛蓄電池	1式 1式
非常用発電設備	ガスタービン発電機 433kW(588PS) 3 φ 3 W×6,600 V×500kVA 430kW(585PS) 3 φ 3 W×6,600 V×375kVA 始動用直流電源装置 300Ah×12セル 制御弁式据置鉛蓄電池 400Ah×24セル 制御弁式据置鉛蓄電池	1台 1台 1式 1式
中央監視設備	LCD装置 大型ディスプレイ プリンタ ロガーコントローラ	4台 2台 2台 1台
遠方監視制御設備	入出力装置 テレメータ・テレコントロール装置(親局) 帯域品目3.4kHz×2線式 保守用電話切替式 テレメータ装置(親局) 帯域品目3.4kHz×2線式 保守用電話切替式 帯域品目3.4kHz×2線式 保守用電話切替式 帯域品目50b/s	1台 2台 1台 1台 3台
付 帯 設 備	構内電話設備 屋内消火栓設備 自動火災警報設備 放送設備 TV共聴設備 避雷設備 デマンド監視設備	1式 1式 1式 1式 1式 1式 1式

25

図2-4 富士北麓浄化センター単線結線図

26

図2-5 富士北麓浄化センターシステム系統図

②中継ポンプ場・幹線及び幹線流量計

中継ポンプ場は、全体計画3箇所全てが整備されており、幹線は、全体計画延長33.5kmの内32.2kmが供用開始している。また、中継ポンプ場の流量計を含めた幹線流量計設置数は7箇所となっている。

流域幹線系統図を図2-6に、流域関連公共下水道接続概要を表2-8に、中継ポンプ場の建築構造物 概要を表2-9に、機械設備概要を表2-10に、電気設備概要を表2-11に、単線結線図を図2-7~図2-9に、幹線概要を表2-12に、幹線付帯設備概要を表2-13に、幹線流量計測設備概要を表2-14に示す。

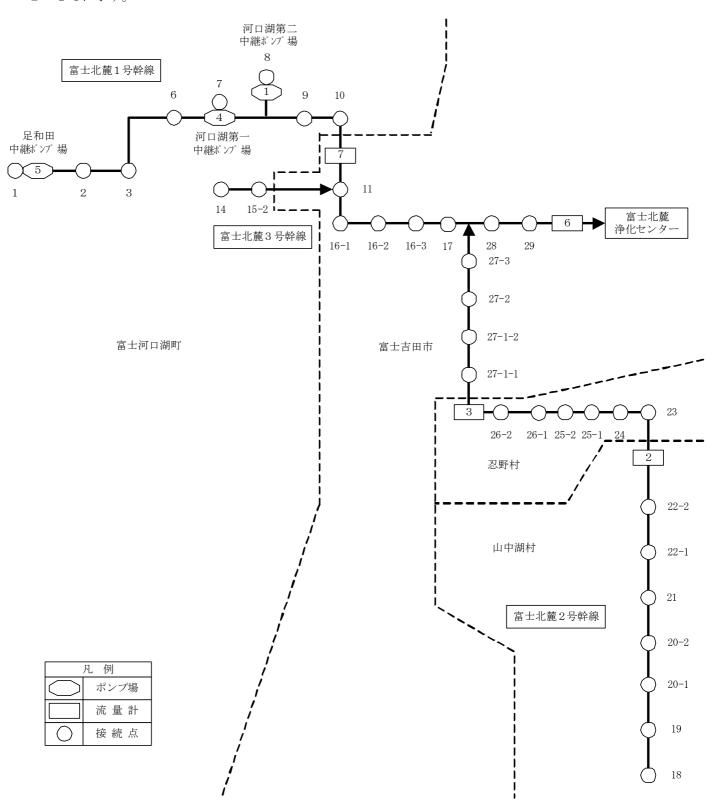


図2-6 流域幹線系統図

表 2 - 8 流域関連公共下水道接続概要

	幹紛	泉名			供用開始	4年月1	7	処理区域面 積	処理区域内 人 口	接続市町村名			
	TI 11/	1, H		人工力 E-1	N (11 N13 N1	- 1 / J F	7	(ha)	(人)	12/19/11/17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
				第 1	平成 2年	4月	1 目	105. 43	1, 121				
		第 2	1 /90 = 1	4万 1日	1 11	79. 69	1, 398						
			第 3	平成 2年	6月	1 目	109. 10	2,068					
		第 6	平成 2年	4月 1日	1 目	51. 50	1, 173						
		第 7		4 /J	1 11	96. 93	2, 448	富士河口湖町					
				第 8	昭和63年	1月	11日	69. 44	1, 534	田 工1.0 口101.61			
				第 9	│ - 昭和61年	7 日	1 目	17. 51	940				
, 	ı	مال	**	第10		1)1	1 11	289. 26	8, 934				
富 1	士 号	北 幹	麓線	第15-1				78. 24	731				
	v		,,,,,	第11	平成 6年	7月	1 目	17. 80	202				
				第11	平成 元年	6月	1 日	21.70	168				
				第16-1	平成 6年	7月	1 日	13. 52	598				
			<u>-</u>	2		第16-2	平成 4年	6月	1 目	30. 77	1,060		
						第	第16-3	一一次	ΟЛ	1 11	11. 43	510	富士吉田市
					第17	昭和61年	7月	1 目	343. 93	10, 784	:		
				第28	平成 2年	6月	1 目	64. 21	2,091				
				第29	平成 3年	6月	1 目	25. 02	791				
			<u>5</u>	第18	平成 6年	5月 1日	1日	103.83	613				
				第19	T/3X 0 T		20. 53	25					
				第20-1	平成 3年	5月10日	36. 95	191					
				第20-2			. О н	12. 50	129				
							第21	平成 2年	7月	1 目	105. 89	1, 216	山中湖村
									第22-1	平成 元年	7月	1 目	144. 64
				第22-2	平成 7年	6月	1 目	1. 20	0				
				第23	平成13年	6月	1日	6. 14	60				
合	_	ᆚ	木木	第25	平成11年	6月	1 目	41. 98	96				
富 2	士 号	北 幹	麓線	第23	昭和63年	8月2	2 O E	35. 33	779				
				第24	ндин о о т	0) ; 2	2 О Н	77. 86	1, 483				
				第25-1	平成31年	4月	1 目	56. 85	741	忍野村			
				第25-2	昭和63年	4月2	20日	196. 15	4, 002	心四川			
				第26-1	昭和63年	8月2	20日	81. 34	870				
				第26-2	平成 7年	4月	1日	10. 50	7				
				第27-1-1	平成 4年	6月	1日	16. 89	61				
				第27-1-2	平成 4年	3月	1 目	0.03	18	┦富士吉田市┃			
				第27-2	平成11年	6月	1日	22. 11	467				
				第27-3	平成 4年	6月	1日	77. 07	2, 502				
富	士	北		第14	平成25年1	0月	1日	4. 66	43	富士河口湖町			
3	号	幹	線	第15-2	令和 2年	6月	1 目	2.02	100				

[※]処理区域内面積及び人口は、令和7年4月1日現在の値を示す。

[※]第15-1処理分区は第10処理分区に暫定流入している。 28

表2-9 中継ポンプ場建築構造物概要

項目 施設	構造及び概要
河口洲笠一	R C 造 地下 1 階、地上 2 階 建築面積 254 ㎡
中継ポンプ場	延床面積 428㎡
	スクリーン室、電気室、自家発電機室、搬出室、その他
	RC造 地下1階、地上1階
河口湖第二	建築面積 154㎡
中継ポンプ場	延床面積 302㎡
	スクリーン室、ゲート弁室、電気室、自家発電機室、その他

表2-10 中継ポンプ場機械設備概要

項目 施設	構造及び能力	現有設備
足 和 田	水中汚水ポンプ(フライホイール付水中スクリューポンプ)	2 台
中継ポンプ場	φ150×2.8m³/min×30m×30kW	
	流入ゲート (鋳物製角形制水扉)	1 門
	$0.6 \mathrm{m} \times 0.6 \mathrm{m} \times 0.75 \mathrm{kW}$	
	スクリーン (バースクリーン)	1 基
	水路幅1m×水路深2.8m×目幅40mm	
	細目自動除塵機(間欠式前面掻揚型)	1 基
	水路幅1m×水路深2.8m×目幅20mm×6.9m/min×1.5kW	
河口湖第一	水中汚水ポンプ(フライホイール付水中汚水ポンプ)	4 台
中継ポンプ場	$\phi 200 \times 3.0 \mathrm{m}^3/\mathrm{min} \times 18 \mathrm{m} \times 15 \mathrm{kW}$	
	脱臭ファン	1 台
	$\phi 200 \times 8 \text{ m}^3 / \text{min} \times 1.6 \text{kPa} \times 0.75 \text{kW}$	
	活性炭吸着塔(立型活性炭吸着塔)	1 塔
	処理風量 8㎡/min	
	水中撹拌機(昇降式水中撹拌機)	2 台
	2. 0kW	
	流入ゲート(鋳鉄製角形制水扉)	1 門
	$0.6 \mathrm{m} \times 0.6 \mathrm{m} \times 0.75 \mathrm{kW}$	
	スクリーン (バースクリーン)	1 基
	水路幅1m×水路深2.7m×目幅40mm	
	細目自動除塵機(間欠式自動除塵機)	1 基
	水路幅1m×水路深2.7m×目幅20mm×6.1m/min×1.5kW	
	水中汚水ポンプ(水中渦巻斜流ポンプ)	2 台
中継ポンプ場	$\phi 200 \times 3.5 \text{m}^3/\text{min} \times 13 \text{m} \times 15 \text{kW}$	
	脱臭ファン	1 台
	$\phi 225 \times 10 \text{m}^3 / \text{min} \times 2.0 \text{kPa} \times 1.5 \text{kW}$, 1115
	活性炭吸着塔(立型活性炭吸着塔)	1 塔
	処理風量 10㎡/min	4 /
	水中撹拌機(昇降式水中撹拌機)	1 台
	0.9kW	

表2-11 中継ポンプ場電気設備概要

ポンプ場名称	設備名称	形式及び仕様	現有設備
	受電設備	受電方式 3 φ 3 W×210 V / 50Hz×1 回線 (動力) 契約電力 36kW 受電遮断器 MCCB 250AF/250AT	1式
	文 电 以 佣	受電方式 1 φ 3 W×210-110 V / 50Hz×1回線 (電灯) 契約電流 10 A 受電遮断器 MCCB 50AF / 50AT	1式
足 和 田中継ポンプ場	無 停 電電源装置	₹=UPS 1kVA	1式
	非常用	ディーゼル発電機 78kW(106PS) 3 φ 3 W×210 V×62. 5kVA	1台
	発電設備	が	1式
		テレメータ装置 (子局) 帯域品目3.4kHz×2線式 保守用電話切替式	1台
	受電設備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 100kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 500 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 210 V × 100 kVA	1台
	低圧進相 コンデンサ	$3 \phi 3 W \times 210 V \times 3 kVA$	1台
河口湖第一中継ポンプ場	直 流 電源装置	50Ah×54セル 制御弁式据置鉛蓄電池	1式
	非常用	ディーゼル発電機 104kW(142PS) 3 φ 3 W×210 V×100kVA	1台
	発電設備	始動用直流電源装置 150Ah×12セル シール形据置式鉛蓄電池	1式
	遠方監視 制御設備	テレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×2線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備	1式 1式

ポンプ場名称	設備名称	形式及び仕様	現有設備
河口湖第二中継ポンプ場	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 75kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 210 V × 75 kVA	1台
	低 圧 進 相 コンデンサ	$3 \phi 3W \times 210V \times 3kVA$	1台
	直 流電源装置	50Ah×54セル 制御弁式据置鉛蓄電池	1式
		ディーゼル発電機	1台
	非常用発電設備	107kW(145PS) 3 φ 3 W×210 V×100kVA 始動用直流電源装置 100Ah×4セル 制御弁式据置鉛蓄電池	1式
	遠方監視制御設備	テレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×2線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備	1式 1式

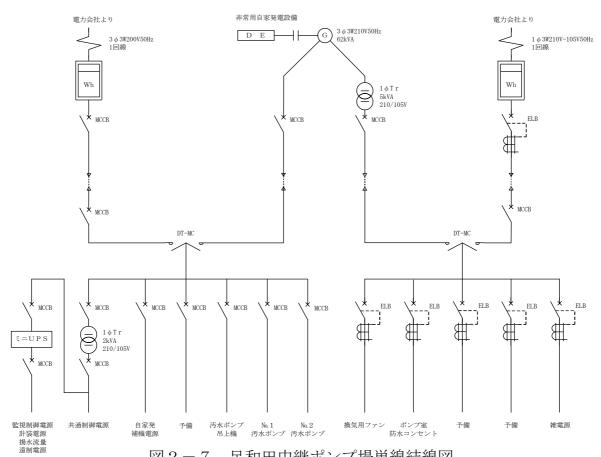


図2-7 足和田中継ポンプ場単線結線図

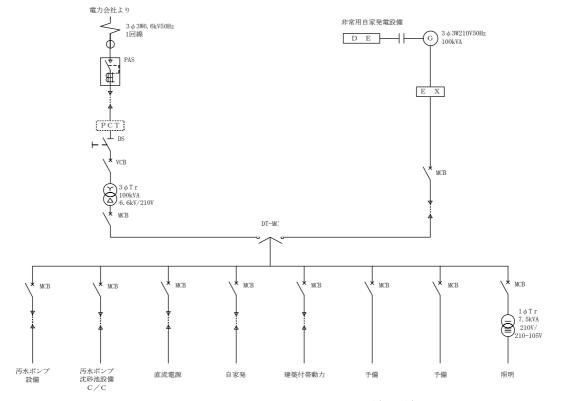


図2-8 河口湖第一中継ポンプ場単線結線図

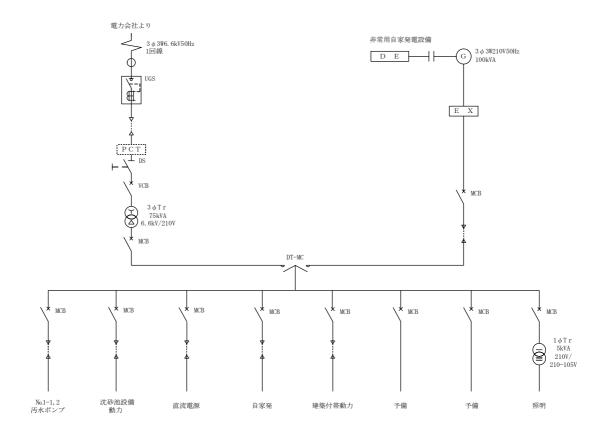


図2-9 河口湖第二中継ポンプ場単線結線図

表 2-12 幹線概要

幹線名	供	用
界 脉 石	管径 (mm)	延長 (m)
富士北麓1号幹線	200 ~ 2,000	12, 572
富士北麓2号幹線	600 ~ 1,800	16, 812
富士北麓3号幹線	250 ~ 800	2, 826
合 計		32, 210

[※]供用管径及び延長は、令和7年4月1日現在の値を示す。

表 2-13 幹線付帯設備概要

幹線名	設備名称	仕様及び形式	現有設備
	中沢川横断部伏越	中沢川横断部 管径 1,100mm 900mm	27. 585 m
富士北麓 1 号幹線	富士北麓1号幹線トンネル	馬蹄形管きょ 幅2,000mm×高2,300mm 「汚水用水路幅 950mm」 「点検用通路幅 900mm」	1, 709. 720 m
	桂川横断部水管橋	桂川横断部 管径 900mm	27. 390m
富士北麓2号幹線		上流側 管径 1,200mm 下流側 馬蹄形管きょ	241. 800 m
田上小庭乙分针林	富士北麓2号幹線トンネル	幅1,800mm×高1,800mm 「汚水用水路幅 800mm 」点検用通路幅 850mm」	435. 900m

表 2 - 1 4 幹線流量計測設備概要

流 量 計 番 号	設備名称	管径 (mm)	流量計口径 (mm)	最大目盛 (㎡/h)	形式
1	第8処理分区流量計 (河口湖第二中継ポンプ場)	l	200	600	電磁式
2	第18~22処理分区流量計	800	800	1,500	PBF、圧力式
3	第18~26処理分区流量計	900	900	2,000	PBF、圧力式
4	河口湖第一中継ポンプ場流量計	_	250	800	電磁式
5	足和田中継ポンプ場流量計	_	150	200	電磁式
6	第1~30処理分区流量計	1, 500	1, 500	6,000	超音波、圧力式
7	第1~10処理分区流量計	900	900	2, 500	超音波、圧力式
備考	流量計番号は図2-6流域幹線系統	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	番号を示す。		

2 施設運転管理状況

(1) 機械設備運転管理状況

①各設備の運転状況等

主要機器運転状況を表 2-1 5 に、し渣及び沈砂搬出状況を表 2-1 6 に、薬品・給水・燃料使用状況を表 2-1 7 に、中継ポンプ場運転状況を表 2-1 8 に示す。

各設備については、下記のとおり運転を行った。

ア) 曝気沈砂池設備

流入ゲートは流入管路の滞泥防止のため、流入水量が少ない朝方にフラッシング操作を行った。 スクリーン設備についてはNo.1 またはNo.2 水路のうち1 水路を使用し、細目スクリーン自動除 塵機は2時間毎のタイマー設定による間欠自動運転を行った。

沈砂池設備については、No.1 沈砂池の沈砂掻き揚げ機が故障したため、機械設備がないNo.2 沈砂池を使用した。

イ) 最初沈殿池設備

使用池数は1.0池を基本とした。No.1-1及びNo.2-1池の年次点検期間は0.5池使用とした。 汚泥掻寄機、初沈汚泥ポンプは連続運転を行った。また、スカムスキマーはスカムの発生状況に 応じて間隔を調整しながら間欠自動運転を行った。

ウ) 反応タンク設備

使用池数は3池とした。

送風機は吐出圧一定制御とし、状況により風量一定制御とした。また、運転号機は負荷の状況によりNo.1 及びNo.2 送風機の $1\sim2$ 台運転を基本とした。No.3 送風機はブラシ引揚装置の部品破損が確認されているため、使用を停止している。

各池の曝気風量の調整は、目標DOに合わせてDO一定制御を基本として調整を行った。

工) 最終沈殿池設備

使用池数は 2.5 池を基本とした。年次点検及び機器分解点検により使用制限を受ける場合については 2.0 池使用とした。

汚泥掻寄機は連続運転とし、スカムスキマーはスカムの発生状況に応じて間隔を調整しながら間欠自動運転を行った。

返送汚泥ポンプは返送率一定制御による自動運転を行った。

余剰汚泥ポンプは余剰汚泥受槽によるレベル制御で自動運転を行った。

才) 塩素滅菌設備

次亜塩注入ポンプは注入率一定制御により連続運転を行った。注入率は残留塩素濃度を確認しながら調整を行った。

カ)機械汚泥濃縮設備

濃縮機はNo.1及びNo.3ベルト濃縮機を主機として余剰汚泥のみの処理とし、1台間欠運転にて、 濃度一定制御による自動運転により処理を行った。No.2遠心濃縮機は予備機として1週間毎に実 負荷運転と洗浄運転を交互に行った。

キ) 重力汚泥濃縮設備

最初沈殿池より送泥された生汚泥を希釈濃縮法により濃縮した。 汚泥掻寄機は連続運転とした。

ク) 汚泥脱水設備

脱水機は、電力消費量削減のため、No.1 汚泥脱水機を主機として運転し、No.2 遠心脱水機は月1回程度の実負荷運転を行った。

ケ) 脱臭設備

脱臭設備は、曝気沈砂池棟、汚泥濃縮棟、汚泥処理棟、搬出棟及び各ポンプ場のいずれも 24 時間連続運転とした。

コ) 関連中継ポンプ場

足和田中継ポンプ場、河口湖第二中継ポンプ場の汚水ポンプは固定速運転でポンプ井水位による間欠運転を行った。河口湖第一中継ポンプ場の汚水ポンプは0~20 時の間は可変速運転でポンプ井水位による間欠運転、20~24 時の間は固定速運転でポンプ井水位による間欠運転を行った。

②未使用機器の保守

未使用機器は、基本的に月次点検時に保守運転を実施した。また、予備機のある機器については、 1箇月毎を基本に交互切替運転とした。

③機器故障状況

本年度の主な機器故障状況を表2-19に示す。

表 2 - 1 5 主要機器運転状況

(単位:時間)

項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
No.1 初沈汚泥ポンプ	551.9	537. 7	544. 4	567. 2	564. 2	546.7	564.0	551. 7	567.4	557. 4	508. 2	561. 3	6, 622. 1
No. 2 初沈汚泥ポンプ	542.9	563. 1	549. 2	562. 9	567. 2	548.3	564.8	546.0	561.6	564. 2	506. 4	552. 1	6, 628. 7
No.1 送風機	720.0	743. 4	719.8	744. 0	744. 0	720.0	744. 0	694. 3	744.0	740.0	671.3	744. 0	8, 728. 8
No. 2 送風機	595.2	698. 9	631.5	622.8	682. 9	630.6	713. 2	706. 4	741.3	739.8	653.5	623.8	8, 039. 9
No. 3 送風機	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
No. 1-1 返送汚泥ポンプ	713.4	726. 7	714.8	697. 1	695.8	569.8	425.5	393. 6	380.7	400.8	371.3	677. 3	6, 766. 8
No. 1-2 返送汚泥ポンプ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
No. 1-3 返送汚泥ポンプ	10.5	26. 3	35. 7	53. 2	66.6	204.5	387. 1	387. 9	453.0	480.8	426. 4	82. 8	2, 614. 8
No. 1-4 返送汚泥ポンプ	632. 2	7. 0	626. 0	6.8	675. 5	11.4	693.8	17. 6	718.3	12.7	649. 2	8.8	4, 059. 3
No. 1-5 返送汚泥ポンプ	11.9	655. 9	10.4	672. 1	20.5	683.0	9. 9	671. 4	7.7	725.6	16. 2	722. 3	4, 206. 9
No. 2-1 返送汚泥ポンプ	12.5	731.3	10.9	734. 5	22.8	384.0	0.1	21. 4	0.2	15.6	0.2	613. 3	2, 546. 8
No. 2-2 返送汚泥ポンプ	710.0	9. 6	710.0	9. 2	734.6	14. 9	13. 3	0. 1	15.5	0.1	14. 1	0. 2	2, 231. 6
No. 1-1 余剰汚泥ポンプ	5.4	296. 3	10.1	377. 3	17.4	359.3	12.7	463. 2	38.0	514. 4	7.6	263. 6	2, 365. 3
No. 1-2 余剰汚泥ポンプ	289.4	15. 9	259. 9	6. 5	386. 2	10.8	434. 9	20.6	461.5	26. 9	293. 7	4. 4	2, 210. 7
No. 2-1 余剰汚泥ポンプ	0.1	40.8	0.6	1.8	0.1	0.1	0.1	0. 1	0.1	0.1	0.1	0. 1	44. 1
No. 2-2 余剰汚泥ポンプ	51.8	0.1	26. 4	0. 1	0.1	0.1	0.1	0. 1	0.1	0.1	0.1	0. 1	79. 2
No.1 次亜塩注入ポンプ	0.2	2. 4	0.2	0.3	7.3	0.2	0.1	0.4	138.6	0.4	149.5	15. 4	315.0
No. 2 次亜塩注入ポンプ	719.3	742.8	718. 9	743. 7	742.5	719.8	743. 9	719. 6	605.7	739.8	522.5	728. 6	8, 447. 1
No.1 ベルト濃縮機	345.6	354. 7	304.8	319.8	368. 2	289. 1	364. 5	346. 1	347.6	58.4	107. 1	245. 7	3, 451. 6
No. 2 遠心濃縮機	2.0	3.0	2.4	3.0	2.0	2.0	2.0	2.0	2.3	3. 1	2.0	2.0	27.8
No. 3 ベルト濃縮機	361.4	308.7	276. 6	353. 2	366. 4	339. 0	370.6	359. 5	371.1	656.8	610.4	495. 5	4, 869. 2
No. 1 汚泥脱水機	306. 1	264. 4	233. 4	286. 4	328.0	275. 6	286.8	287. 5	282.0	288. 2	277. 9	307. 8	3, 424. 1
No. 2 遠心脱水機	9.3	27.7	42. 1	14.8	11.4	11. 9	13. 1	16. 9	10.7	12. 9	9. 6	10. 5	190. 9
No.1 非常用発電機	0.2	0.3	1. 1	0.2	0.2	0.2	0.2	0. 2	0.2	0.2	0.6	0. 2	3.8
No. 2 非常用発電機	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0. 1	1.3

表2-16 し渣及び沈砂搬出状況

項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
し渣搬出量(水処理系)) (kg)	1, 183	976	941	1, 168	567	1, 192	2, 453	1, 777	3, 164	3, 467	1, 797	986	19, 671
し渣搬出量(汚泥処理	系) (kg)	1,098	645	637	946	984	1,063	763	874	923	1,034	968	1,092	11,027
沈砂搬出量	(kg)	0	0	0	0	3, 035	0	0	0	0	0	0	0	3,035

表 2 - 1 7 薬品・給水・燃料使用状況

						<u> </u>	<u> </u>	/ \ \ \ \ \	/I:D/J*	/mm1 1 1/~	7 13 V V V L	1				
	項	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
	固形塩素剤		(kg)	0	0	0	0	0	0	0	0	0	0	0	0	0
	次亜塩素酸ナ	トリウム	(L)	5, 400	5, 850	5, 570	6,020	7,070	6, 420	6, 150	5, 740	5, 370	5, 370	4, 750	4, 950	68,660
薬品	高分子凝集剤(機	械濃縮系)	(kg)	49.3	45. 9	49.0	60.0	66. 2	52. 5	52. 9	56. 7	45.2	47.0	51. 3	59. 5	635. 5
米四	高分子凝集剤(原	脱水機系)	(kg)	1, 183. 1	910.2	867. 9	1,037.1	1, 208. 6	908.8	900.0	903.0	886.6	1,007.8	1,018.0	1, 137. 8	11, 968. 9
	消臭剤(重力湯	農縮系)	(L)	3, 371	3, 540	3, 508	3, 942	4, 954	4, 365	3, 778	3, 391	2,702	2, 376	1, 934	2, 340	40, 201
	消臭剤(脱水機	幾系)	(L)	605	565	690	828	1, 104	885	796	708	416	438	425	452	7,912
給水	上水		(m³)	67	67	51	48	55	45	44	87	42	48	41	42	637
和小	砂ろ過水		(m³)	27, 338	28, 330	25, 929	25, 653	27, 466	24, 949	21, 386	19, 200	19, 586	18, 106	17, 740	21,803	277, 486
燃料	重油		(L)	28	47	173	25	27	29	26	28	28	29	80	28	548

表 2 - 1 8 中継ポンプ場運転状況 (単位:時間)

ポンプ場名	項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
足和田	No. 1	汚水ポンプ	59.7	61.5	68.4	83. 8	76. 6	94. 9	69.4	66. 6	74. 9	74. 7	60.5	57.8	848.8
中継ポンプ場	No. 2	汚水ポンプ	61.9	63.7	71.4	87. 3	79. 2	98. 9	69.6	67. 5	77.7	77. 2	62. 2	59. 7	876. 3
1 /100 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	非常用	発電機	0.2	0.5	1.0	0.2	0.3	0.2	0.2	0.2	1.1	0.2	0.2	0.2	4. 5
	No. 1-1	汚水ポンプ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.8	428. 2	509.7	980.7
河口洲松	No. 1-2	汚水ポンプ	0.5	0.9	0.7	1.0	2.2	31.5	0.9	0.7	0.8	1. 1	0.4	0.7	41.4
河口湖第一 中継ポンプ場	No. 2-1	汚水ポンプ	17.4	279.7	42.9	351.0	72.4	315.4	122.0	360.0	391.7	335. 1	0.7	79.0	2, 367. 3
1 MEA . 2 2 500	No. 2-2	汚水ポンプ	335.3	80.7	302.8	16. 7	317.8	32.0	243. 1	0.0	0.0	46.6	124. 3	8. 5	1, 507. 8
	非常用	発電機	0.2	0.2	1. 1	0.2	0.2	0.4	0.2	0.2	1.1	0.2	0.2	0.2	4.4
)=T ==)H1/45t ==	No. 1-1	汚水ポンプ	0.5	0.6	1.0	0.5	0.5	0.6	0.4	0.5	0.7	0.4	0.6	0.5	6.8
河口湖第二 中継ポンプ場	No. 1-2	汚水ポンプ	111.0	115.7	110.1	123.6	144. 2	137. 2	120.2	119.9	124.4	138.8	129. 2	133. 7	1, 508. 0
1 /100 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	非常用	発電機	0.2	0.2	1. 1	0.2	0.2	0.4	0.2	0.2	1.1	0.2	0.2	0.2	4.4

表 2 - 1 9 機器故障状況 (機械関連)

機器名称	内容及び原因	処置及び対応
水処理施設	モータが空転し、駆動チェーンが動作していない	減速機構成部品の交換
No. 2 - 1 終沈	状況であった。	を実施した。
汚泥掻寄機	原因は経年劣化によるものであった。	
水処理施設	圧力計の針が固着していた。	圧力計の交換を実施し
空気圧縮機	原因は経年劣化によるものであった。	た。
水処理施設	放熱器の配管にピンホールが空いていた。	アフタークーラーの交
アフタークーラー	原因は経年劣化によるものであった。	換を実施した。
水処理施設	スカムスキマ用エアレギュレーターよりエアーが	エアレギュレーターの
初沈スカムスキマ用	漏れていた。	交換を実施した。
電磁弁箱	原因は経年劣化によるものであった。	
砂ろ過棟	運転しても圧力計の指示値が上がらない状況であ	圧力計の交換を実施し
No. 2 - 1 空気圧縮機	った。	た。
	原因は経年劣化によるものであった。	
砂ろ過棟	エレメントキャップより水が滲んでいる状況であ	0 リングの交換を実施
No. 2 − 2 原水用	った。	した。
散水ストレーナ	原因は経年劣化によるものであった。	
汚泥処理棟	圧力計の針が固着していた。	圧力計の交換を実施し
No. 2 脱水機給泥ポンプ	原因は経年劣化によるものであった。	た。
生物脱臭棟	エレメントキャップより水が滲んでいる状況であ	0 リングの交換を実施
散水ストレーナ	った。	した。
	原因は経年劣化によるものであった。	
汚泥処理棟	ポンプの軸封部のオイルポットからオイルが漏れ	オイルポットの交換を
No.1, 2濃縮汚泥移送	ていた。	実施した。
ポンプ	原因は経年劣化によるものであった。	
搬出棟	電動シャッターを開けた際、正規の位置で停止せ	吊元及び電動開閉器の
電動シャッター	ず収納ボックス内で巻き込まれた状態となった。	交換を実施した。
	原因は電動開閉器の不良によるものであった。	
河口湖第二中継	圧力計が通常値より低い値を示していた。	圧力計の交換を実施し
ポンプ場	原因は経年劣化によるものであった。	た。
脱臭ファン		

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

(2) 電気設備運転管理状況

①電力使用状況

施設の受電電圧は、富士北麓浄化センター、河口湖第一中継ポンプ場及び河口湖第二中継ポンプ 場は高圧 6,600 V、足和田中継ポンプ場が低圧 200 V (動力) 及び 200-100 V (照明) である。

富士北麓浄化センター、足和田中継ポンプ場、河口湖第一中継ポンプ場及び河口湖第二中継ポンプ場の使用電力量と流入下水量の表とグラフをそれぞれ表 2-20~表 2-23、図 2-10~図 2-13に示す。

浄化センターの使用電力量は、 $201\sim225$ 千 kWh/月の間で推移し、年間として 2,542 千 kWh/年となり、昨年度と比較して約 2.1%の減少となった。

浄化センターの原単位電力量と最大需要電力の表とグラフをそれぞれ表 2-24、図 2-14、図 2-15に示す。

原単位電力量は 0.270~0.314kWh/m³の間で推移した。

最大需要電力は、329~358kWの間で推移した。

デマンド監視装置によるデマンド管理の目標値は、年間を通じて359kWに設定し、例年、需要電力のピークとなる8月の最大需要電力は抑制により目標値以下で抑えることが出来た。

浄化センターの契約電力は、実量制による契約電力決定方式により年間を通じて 358kW であった。ポンプ場の契約電力は、河口湖第一及び河口湖第二中継ポンプ場は実量制による契約電力決定方式により、河口湖第一中継ポンプ場は 19~49kW、河口湖第二中継ポンプ場は 9~18kW の間で推移した。また、足和田中継ポンプ場は設備容量による契約電力決定方式により 36kW であった。

②非常用発電設備運転状況

浄化センターでは、保守点検として、1箇月に1回約5~10分間の無負荷運転と、6箇月に1回1時間の実負荷運転を実施し、総発電電力量は300kWhであった。

足和田中継ポンプ場では、保守運転として1箇月に1回約10分間の無負荷運転と、6箇月に1回約1時間の実負荷運転を実施し、総発電電力量は15kWhであった。また、情報処理計装設備保守点検業務委託の計装設備点検後の確認として、5月に1回約10分間の実負荷運転を実施し、発電電力量は7kWhであった。

河口湖第一中継ポンプ場では、保守運転として1箇月に1回約10分間の無負荷運転と、6箇月に 1回約1時間の実負荷運転を実施し、総発電電力量は6kWhであった。

河口湖第二中継ポンプ場では、保守運転として1箇月に1回約10分間の無負荷運転と、6箇月に1回約1時間の実負荷運転を実施し、総発電電力量は1kWhであった。

また、停電による運転として、足和田中継ポンプ場では8月に2分間の実負荷運転を実施し、発電電力量は1kWh であった。河口湖第一中継ポンプ場及び河口湖第二中継ポンプ場では9月に4分間(それぞれ2分間を2回)の実負荷運転を実施し、発電電力量は0kWh であった。

③機器故障状況

本年度の主な機器故障状況を表2-25に示す。

表2-20 使用電力量と流入下水量(浄化センター)

													(単位:上段	kWh,下段 ㎡)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	210, 816	215, 880	206, 064	217, 704	225, 096	201,864	203, 400	204, 960	218, 208	218, 112	200, 616	218, 928	2, 541, 648	211, 804
流入下水量	672, 074	693, 935	678, 043	737, 625	801, 349	734, 141	717, 497	697, 706	767, 014	807, 721	739, 340	770, 250	8, 816, 695	734, 725

表2-21 使用電力量と流入下水量(足和田中継ポンプ場)

													(単位:上段	kWh,卜段 mǐ)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	3, 586	3, 387	3, 498	4,861	4, 130	5, 170	4, 150	3,642	3, 476	4, 930	3, 851	3, 485	48, 166	4,014
流入下水量	16, 429	17, 536	18, 658	21, 953	22, 309	24, 155	18, 614	17, 898	19, 026	18, 371	14, 769	14, 868	224, 586	18, 716

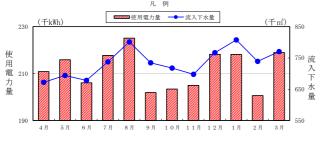


図2-10 使用電力量と流入下水量(浄化センター)

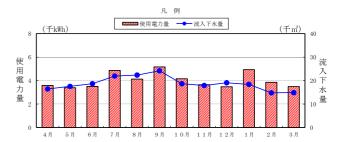


図2-11 使用電力量と流入下水量(足和田中継ポンプ場)

表2-22 使用電力量と流入下水量(河口湖第一中継ポンプ場)

(単位:上段 kWh,下段 m³)

													(+ 1214)	111111111111111111111111111111111111111
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	7, 407	7, 487	7, 563	8, 188	8, 327	7, 702	7, 807	7, 507	8,673	8, 284	6, 794	7, 298	93, 037	7, 753
流入下水量	86, 439	88, 819	86, 642	92, 508	99, 043	92, 484	90, 042	88, 195	97, 058	101, 355	92, 221	93, 296	1, 108, 102	92, 342

表2-23 使用電力量と流入下水量(河口湖第二中継ポンプ場)

(単位:上段 kWh,下段 m³)

														111111111111111111111111111111111111111
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	3, 753	3, 808	3, 788	4, 296	4, 432	4,020	3, 947	4,006	4, 412	4, 768	4, 109	4, 294	49, 633	4, 136
流入下水量	29, 964	31,009	29, 329	33, 124	36, 268	34, 016	31, 432	31, 429	32, 006	35, 251	32, 428	32, 935	389, 191	32, 433

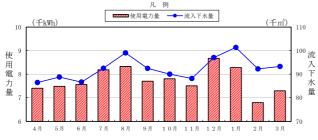


図2-12 使用電力量と流入下水量 (河口湖第一中継ポンプ場)

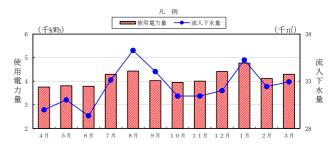


図2-13 使用電力量と流入下水量(河口湖第二中継ポンプ場)

表2-24 原単位電力量と最大需要電力(浄化センター)

(単位:上段 kWh/m³,下段 kW)

												(年世・工物	KWII/ III, +X KW/
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	平均
原単位電力量	0.314	0.311	0.304	0. 295	0. 281	0. 275	0. 283	0.294	0. 284	0. 270	0. 271	0. 284	0. 289
最大需要電力	350	346	353	353	355	350	329	348	353	358	358	358	351

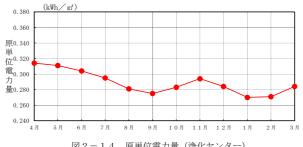


図 2-1 4 原単位電力量 (浄化センター)

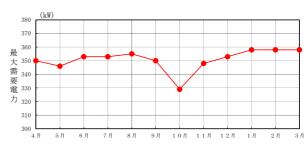


図2-15 最大需要電力(浄化センター)

表 2 - 2 5 機器故障状況 (電気関連)

	-	
機器名称	内容及び原因	処置及び対応
送風機自家発棟	スピーカから放送音が聞こえない状況であった。	スピーカの交換を実施し
拡声設備	原因は、経年劣化によるものであった。	た。
送風機自家発棟	排風機の運転を行った際に故障が発生した。	マグネットスイッチの交
ポンプ室動力制御盤	原因はマグネットスイッチの経年劣化によるものであ	換を実施した。
	った。	
水処理施設	濃度が下がり、ホールドした。測定画面ではなく、初	変換器の交換を実施し
No. 1 初沈汚泥濃度計	期画面表示となり、計測不可となった。	た。
	原因は変換器の不良によるものであった。	
No. 1 搬出棟	電流指示値が通常より高い値となっていた。また、機	電流計の交換を実施し
No. 3 ケーキコンベヤ	器停止時に電流指示値が4Aを指示していた。	た。
現場操作盤	原因は、電流計の経年劣化によるものであった。	
汚泥処理棟	「VVVF故障」警報が発生し脱水機が停止した。	インバータの交換を実施
No. 1 脱水機給泥ポンプ	原因は、インバータの不良によるものであった。	した。
インバータ		
汚泥処理棟	照明の一部が点灯しない状況となっていた。	リモコンリレーの交換を
電灯分電盤	原因は、リモコンリレーの経年劣化によるものであっ	実施した。
	た。	

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

3 水質及び汚泥管理状況

(1) 水質管理状況

①水質試験結果

水質試験結果を表2-26~表2-29、図2-16~図2-17に示す。

流入水質については、年間平均BODが140mg/L、SSが140mg/Lであった。汚濁濃度は冬期に 凍結防止水の影響により低下する傾向を示した。

放流水については、年間を通し良好で安定した水質であった。

②幹線調査結果

幹線調査結果を表2-30に示す。

幹線調査では、全地点でふっ素及びその化合物が検出されたが、いずれも下水道排除基準未満であった。

③反応タンク試験結果及び生物試験結果

反応タンク運転状況、反応タンク試験結果及び生物試験結果を表 2-31~表 2-34に、反応タンクの管理状況を図 2-18~図 2-19に示す。

反応タンクは使用可能な5池のうち、通常使用として3池を使用した。処理方式としては、No.1-1池、No.1-2池及びNo.2-1池の使用時は二段式嫌気好気法で、No.1-3池、No.1-4池の使用時は疑似嫌気好気法による運転とした。

返送汚泥率は、最終沈殿池での汚泥界面や処理水窒素濃度に応じ、約56~80%の範囲で調整した。

SVIは94~290mL/gで推移し、年間平均値は180mL/gであり、冬期に上昇傾向を示したが沈降性は年間を通し概ね良好であった。

BOD-SS負荷は $0.15\sim0.38$ kg/kg・日で推移し、年間平均値は0.21kg/kg・日であった。活性汚泥中の微生物は、概ね年間を通して種類も多く、良好な状況であった。

④通日試験結果

通日試験結果を表2-35~表2-38、図2-20~図2-35に示す。

流入水負荷は、年間を通して 10:00~24:00 頃が高く、4:00~6:00 頃に急激に低下する傾向を示した。

放流水は、年4回のいずれの試験においても水質変動が小さく、安定した良好なものであった。

(2) 汚泥管理状況

汚泥処理運転状況を表2-39に、汚泥試験測定結果を表2-40~表2-42に示す。

生汚泥は、連続的に引き抜きを行い重力濃縮槽に投入した。また、重力濃縮槽は年間を通し安定した処理ができた。

余剰汚泥は、MLSSの状況に合わせて引き抜きを行い、機械濃縮機により濃縮を行った。目標 濃縮濃度は汚泥性状に応じ4.0%前後とした。

脱水は電力消費量削減のため、No.1 汚泥脱水機(ロータリープレス脱水機)を主機として運転し、No.2 汚泥脱水機(遠心脱水機)は週1回の実負荷運転又は洗浄運転とした。

脱水ケーキの発生量は年間 4,228.53 t、含水率は年間平均で 70.6%と良好に推移した。なお、脱水ケーキは、22%をセメント原料、78%を肥料原料として全量有効利用した。

(3) その他管理状況

①放流河川調査結果

放流河川調査結果を表 2 - 4 3 ~ 表 2 - 4 4 に示す。 浄化センター放流口の上流域及び下流域とも、ほぼ同程度の水質であった。

②臭気測定結果

臭気測定結果を表2-45に示す。

敷地境界における臭気指数はすべて検出下限値未満であった。

表 2 - 2 6 日常試験分析結果(流入水)

項		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	最大	20.0	21.0	22. 5	24. 0	25. 0	24. 5	24. 0	21. 5	20.0	17. 0	16.0	18.0	25. 0
	最小	17.0	19.0	21.0	22. 0	23. 5	23. 0	21.0	19. 5	17. 0	15. 5	15. 5	15.0	15. 0
(℃)	平均	18.6	20.3	21.6	23. 1	24. 5	23. 8	22. 5	20. 9	18. 3	16. 2	15. 6	16. 3	20.1
水素イオン濃度	最大	7. 33	7. 33	7. 31	7. 29	7. 22	7. 37	7. 29	7. 33	7. 35	7.40	7. 35	7. 38	7. 40
	最小	7. 17	7. 13	7. 15	7. 12	7. 10	7. 11	7. 14	7. 10	7.14	7. 27	7. 20	7. 22	7. 10
	平均	7. 24	7. 23	7. 22	7. 18	7. 16	7. 20	7. 21	7. 23	7. 26	7.31	7. 29	7.30	7. 24
透視度	最大	6.0	6.0	7. 0	6.0	7.0	7. 0	6.0	6.0	6. 0	7. 0	6.0	7.0	7. 0
	最小	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5. 0	5.0	6.0	5.0	5. 0
(cm)	平均	5.4	5.4	5. 9	5. 7	5. 7	6.0	5.8	5. 3	5. 6	6.0	6.0	6.0	5. 7
浮遊物質量	最大	170	180	160	160	150	140	170	170	150	140	140	170	180
	最小	120	130	110	130	120	120	120	130	120	110	110	110	110
(mg/L)	平均	150	150	150	140	140	130	140	150	130	120	120	140	140
生物化学的酸素要求量	最大	160	160	150	140	140	130	140	150	160	140	130	160	160
	最小	140	130	120	130	130	120	120	130	130	130	120	110	110
(mg/L)	平均	150	150	140	130	140	130	130	140	150	130	130	140	140
化学的酸素要求量	最大	85	83	81	74	80	72	81	77	75	70	70	84	85
	最小	66	70	59	65	55	52	59	65	64	59	58	60	52
(mg/L)	平均	76	76	74	70	72	64	69	71	70	63	64	69	70
大腸菌群数	最大	160	190	200	140	320	210	140	130	230	92	79	110	320
	最小	110	140	120	100	110	100	100	97	97	70	75	57	57
(千個/c m³)	平均	130	160	150	120	220	160	120	110	130	79	77	88	130

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表 2 - 2 7 日常試験分析結果(放流水)

項	1	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水 温	最大	21.0	22.0	23. 5	25. 5	26.0	25. 5	25.0	22. 5	20. 5	17. 5	17.0	18.5	26. 0
	最小	18. 5	20.0	22. 0	23. 5	24. 0	24. 0	22.0	20.5	17. 5	16. 5	16.0	16.0	16. 0
(℃)	平均	19.6	21.4	22. 6	24. 4	25. 6	24.8	23. 4	21.7	19. 1	17. 1	16.5	17. 1	21. 1
水素イオン濃度	最大	6.87	6. 98	6.85	6. 90	6. 96	7. 01	6. 96	6.99	6.97	6.85	6. 78	6.89	7. 01
	最小	6. 52	6.70	6.66	6.71	6.61	6. 75	6. 67	6.61	6.61	6.51	6.62	6.50	6. 50
	平均	6. 73	6.84	6.79	6. 79	6.80	6.87	6. 79	6.82	6. 77	6.75	6.71	6.74	6. 78
透視度	最大	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
	最小	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
(cm)	平均	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
浮遊物質量	最大	4. 1	4.6	3. 2	3. 2	3.6	6. 1	2. 2	4. 4	1.6	1.7	1.6	2. 7	6. 1
	最小	1. 3	1.9	1.3	1. 1	1. 1	1.3	1.0	1. 1	<1.0	<1.0	<1.0	1.3	<1.0
(mg/L)	平均	2.5	3. 1	2. 3	2. 2	1.9	2.4	1.5	1.8	1.2	<1.0	<1.0	2.0	1. 7
生物化学的酸素要求量	最大	5. 1	4.7	3. 7	3. 3	3. 1	3. 5	2.7	3.0	4.3	1. 9	2.8	3.6	5. 1
	最小	2.2	3. 2	2. 3	2. 5	1.9	1.6	1.6	1.7	1.7	1.0	2.0	2. 1	1.0
(mg/L)	平均	3. 2	3. 7	3. 0	2.8	2. 4	2.6	2. 1	2. 1	2. 5	1.6	2. 3	2.8	2. 6
化学的酸素要求量	最大	9.5	10	8. 4	8. 1	7. 9	9.0	7.8	8.0	8. 1	6.6	6.9	8.5	10
	最小	6.9	7. 6	5.8	6.7	5. 6	5. 5	5.6	6. 7	6. 5	5. 3	5.8	6.5	5. 3
(mg/L)	平均	8.3	8.6	7. 7	7.4	7. 2	7. 2	6.9	7. 2	7. 2	6. 1	6. 2	7. 5	7. 3
大腸菌群数	最大	0	1	1	6	2	0	0	0	37	0	0	0	37
	最小	0	0	0	0	0	0	0	0	0	0	0	0	0
(個/c m³)	平均	0	0	0	4	0	0	0	0	9	0	0	0	1

※年最大最小平均の欄の平均については、月間平均値の平均値である。

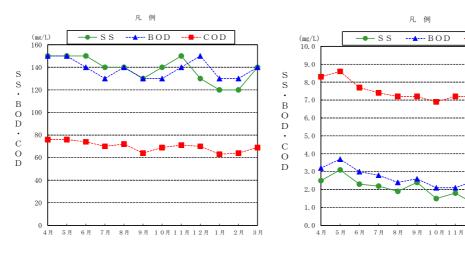


図2-16 流入水の水質変化

図2-17 放流水の水質変化

表 2-28(1) 精密試験分析結果(流入水-1)

		衣乙	$ \angle$ \langle	•				川福木			T /			1	
測定項目	単位		月	5	月	6	月	7	月	8	月		月	1	0月
実施日	_	4	18	2	16	6	20	4	18	1	15	5	19	3	17
水温	$^{\circ}$ C	18.0	19.0	19.0	20.5	21.0	21.5	23.0	23.0	24. 0	25.0	24. 0	24. 0	24.0	22. 5
透視度	c m	5.0	5.0	6.0	5. 0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6. 0	6.0	6.0
水素イオン濃度	_	7. 28	7. 28	7. 27	7. 23	7. 23	7. 31	7. 24	7. 19	7. 15	7. 13	7. 27	7. 14	7. 17	7. 29
蒸発残留物	mg/L	390	390	350	400	410	400	400	430	400	420	370	430	420	390
強熱残留物	mg/L	180	190	160	170	180	230	170	200	200	210	190	170	210	
		260	260	200	250	270	260	270	270	270	250	240	250	270	
溶解性物質	mg/L														
浮遊物質量	mg/L	140	160	140	160	160	130	140	140	140	150	120	130	130	
アルカリ度	mg/L	133	137	119	134	133	128	129	130	133	138	128	130	134	
生物化学的酸素要求量	mg/L	150	160	130	150	150	120	140	130	140	140	120	130	130	
化学的酸素要求量	mg/L	78	74	72	77	78	70	72	69	72	73	64	68	68	73
アンモニア性窒素含有量	mg/L	16. 1	15.0	14. 9	17.4	17.4	15.8	13.5	14. 7	17. 4	18. 9	14. 3	15.8	16. 2	16. 7
亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
硝酸性窒素含有量	mg/L	0.34	0.32	0.39	0.32	0.40	0.33	0.33	0.32	0.31	0.33	0.25	0. 28	0.31	0.27
有機性窒素含有量	mg/L	10.8	11.5	11. 7	10. 2	8. 29	9. 73	12.8	9. 54	9. 88	11. 1	9. 60	9. 77	10. 4	9. 69
空素含有量	mg/L	27. 1	26. 9	27. 0	27. 9	26. 1	25. 9	26.6	24. 5	27. 6	30. 4	24. 2	25. 8	27. 0	26. 7
燐酸イオン態燐含有量	mg/L	1. 12	1. 25	0. 90	1. 19	1. 24	1. 08	1. 10	1.00	1. 16	1. 32	0. 97	1.08	1. 09	
	mg/L	2. 93	3. 08	2. 75	3. 15	3. 18	2. 60	2. 93	2. 76	2.89	3. 07	2. 69	3.00	3. 03	
大腸菌群数	Illg/L 千個/cm³	2. 93	3.00	140	190	3. 16	130	2. 93	100	2. 89	320	100	200	3.03	
		9													
よう素消費量	mg/L		7	13	13	11	13	13	13	13	17	16	16	11	11
ノルマルヘキサン抽出物質含有量	mg/L	7	8	8	9	9	6	9	8	7	12	9	10	9	-
シアン化合物	mg/L	_	_	_		_	_	_	_	<0.01	_		_		_
フェノール類含有量	mg/L	_	_			_	_	_	_	<0.50	_	_	_	_	_
鉄含有量	mg/L	0.18	0.11	0.31	0.16	0.14	0.18	0.17	0.21	0.21	0.17	0.20	0.16	0.17	0.12
溶解性鉄含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.12	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	- (0.01	_	-	-	-	-	-	-	<0.001	-	-	-	_	-
クロム含有量								_	_	<0.001			_	_	_
	mg/L	/0.01	/0.01			/0.01	/0.01				(0.01	/0.01			
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀 その他の水銀化合物	mg/L	_	_	_	_	_	_	_	_	<0.0005	_	_	_	_	_
トリクロロエチレン	mg/L	-	_	_	_	_	_	_	_	<0.002	_	_	_		_
テトラクロロエチレン	_	<0.0005	<0.0005	<0.0005	<0.0005	< 0. 0005	<0.0005	<0.0005	< 0.0005		< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005
アルキル水銀化合物	mg/L	_	_		-	-	-	-	-	<0.0005		_			
有機燐化合物	_		_			_			_	<0.1	_		_		
	mg/L		_			_	_	_	_			_	_		
ポリ塩化ビフェニル	mg/L									<0.0005					_
ジクロロメタン	mg/L	_	_	<0.02	_	_	_	_	_	<0.02	_	_	_	_	_
四塩化炭素	mg/L	_	_	<0.002		_	_	_	_	<0.002	_	_	_	_	_
1,2-ジクロロエタン	mg/L	_	_	_		_	_	_	_	<0.004	_	_	_	_	_
1,1-ジクロロエチレン	mg/L	_	_			_	_	_	_	<0.02	_	_	_	_	_
シス1,2-ジクロロエチレン	mg/L	_	_	_	_	_	_	_	_	<0.04	_	_	_	_	_
1,1,1-トリクロロエタン	mg/L	1	_	<0.001	_	_	_	_	_	<0.001	_	_	_		_
1, 1, 2-トリクロロエタン	mg/L	_	_	_		_	_	_	_	<0.006	_	_	_	_	_
1, 3-ジクロロプロペン	mg/L	_	_	_	_	-	_	_	_	<0.002	_	_	_	_	_
チウラム	mg/L	_	_	_	_	_	_	_	_	<0.006		_	_	_	_
シマジン	mg/L	_	_	_		_	_	_	_	<0.003		_	_	_	_
チオベンカルブ	mg/L		_	_		_	_	_	_	<0.02		_	_		_
ベンゼン	_		_	<0.01	_	_	_	_	_	<0.02	_	_	_		_
	mg/L		_	\U. U1											
セレン及びその化合物	mg/L		_							<0.01	-	-	- (1.0	- (1.0	- (1.0
ほう素及びその化合物	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	
ふっ素及びその化合物	mg/L	0. 13	0. 17	0. 16	0. 18	0. 20	0. 17	0. 13	0.13	0.13	0.13	0.14	0.14	0.17	0.18
アンモニア性窒素、亜硝酸性窒素 及び硝酸性窒素含有量	mg/L	16.4	15.3	15.3	17.7	17.8	16. 1	13.8	15. 0	17. 7	19. 2	14. 6	16. 1	16. 5	17.0
及い明酸性至系3月里 1,4-ジオキサン	mg/L	_	_	<0.05		_	_	_	_	<0.05	_	_	_	_	_
1,1 4 4 1 2 4	шg/ L			\v. və						\v. və					

表 2 - 2 8 (2) 精密試験分析結果(流入水-2)

測定項目	単位	1 1	<u>2</u> 0	1 5	2月		<u>次ノナル</u> 月		月	3	<i>2)</i> 日	最大	最小	平均
実施日	- HILL	7	21	5	19	9	23	5		6	19	- AX/	- XX,1	
水温	$^{\circ}\!\mathbb{C}$	21.0	20. 5	19. 0	18. 0	16. 0	16. 5	15. 5	15. 5	15. 5	15. 5	25. 0	15. 5	20. 1
透視度	ст	6.0	6. 0	6. 0	6. 0	6.0	6.0	6.0	6. 0	6. 0	6. 0	6. 0	5. 0	5. 9
水素イオン濃度	— —	7. 18	7. 22	7. 32	7. 22	7. 33	7. 31	7. 33	7. 33	7. 25	7. 36	7. 36	7. 13	7. 25
蒸発残留物				370		330	370		330	330			330	380
	mg/L	400	380		330			340			340	430		
強熱残留物	mg/L	230	200	200	160	160	200	180	190	160	190	230	160	190
溶解性物質	mg/L	240	270	230	240	240	220	210	220	220	220	270	200	250
浮遊物質量	mg/L	140	140	140	120	110	120	120	110	120	120	160	110	130
アルカリ度	mg/L	134	138	139	122	116	117	122	118	112	125	139	112	128
生物化学的酸素要求量	mg/L	150	130	160	140	130	130	130	120	110	140	160	110	140
化学的酸素要求量	mg/L	68	69	71	68	66	66	64	61	61	64	78	61	69
アンモニア性窒素含有量	mg/L	17.5	16.4	16. 9	13. 4	12.8	14. 7	14. 3	13.8	13. 6	15. 4	18. 9	12.8	15. 5
亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	0.30	0. 15	0. 20	0.05	0.13	0.12	0.13	0.30	<0.02	0.05
硝酸性窒素含有量	mg/L	0.31	0.31	0.36	0.33	0.44	0.46	0. 28	0.62	0.65	0.41	0.65	0. 25	0.36
有機性窒素含有量	mg/L	10.1	9. 20	10. 1	10.5	8. 97	7.48	9. 76	7. 49	8. 18	7.85	12.8	7. 48	9. 78
窒素含有量	mg/L	27.8	25. 9	27. 4	24. 5	22.3	22.8	24. 4	22. 1	22. 6	23.8	30. 4	22. 1	25. 7
燐酸イオン態燐含有量	mg/L	1.09	1.03	1.06	0. 98	0.89	0. 98	1.00	0.97	0.87	1.00	1.32	0.87	1.06
燐含有量	${\rm mg}/L$	2. 96	2. 84	2. 90	2. 58	2. 41	2. 53	2.66	2. 43	2. 20	2.74	3. 18	2. 20	2. 79
大腸菌群数	手個/c㎡	97	100	100	97	75	70	75	75	57	88	320	57	120
よう素消費量	${\rm mg}/{\rm L}$	11	10	11	10	8	10	14	7	9	7	17	7	11
ノルマルヘキサン抽出物質含有量	mg/L	8	8	10	8	8	10	10	8	8	10	12	6	9
シアン化合物	mg/L	_	_	1	-	_	_	<0.01	_	-	_	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	_	_	_	_	_	_	<0.50	_	_	_	<0.50	<0.50	<0.50
鉄含有量	mg/L	<0.10	0. 18	<0.10	0. 11	<0.10	0. 13	<0.10	0. 12	0.11	0.13	0.31	<0.10	0. 14
溶解性鉄含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0. 12	<0.10	<0.10
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	-	-	-	-	-	-	<0.001	-	-	_	<0.001	<0.001	<0.001
クロム含有量	mg/L	_	_	_			_	<0.05	_		_	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀			(0.000			(0.000					(0.000			
その他の水銀化合物	mg/L	_	_		_		_	<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	_	_	_	_	_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	_				_	<0.0005	_		_	<0.0005	<0.0005	<0.0005
有機燐化合物	mg/L	_	_				_	<0.1	_		_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	_	_		_	_	_	<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	<0.02	_	1		_	_	<0.02	_		_	<0.02	<0.02	<0.02
四塩化炭素	mg/L	<0.002	_	-		_	_	<0.002	_		_	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	_	_	_	_	_	_	<0.004	_	_	_	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	_	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
シス1,2-ジクロロエチレン	mg/L	_	_	_	_	_	_	<0.04	_	_	_	<0.04	<0.04	<0.04
1,1,1-トリクロロエタン	mg/L	<0.001	_	_	_	_	_	<0.001	_	_	_	<0.001	<0.001	<0.001
1, 1, 2-トリクロロエタン	mg/L	_	_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	mg/L	_	_	_	_		_	<0.002	_	_	_	<0.002	<0.002	<0.002
チウラム	mg/L	_	_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
シマジン	mg/L	_	_	_	_		_	<0.003	_	_	_	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	_	_	_		_	<0.003		_	_	<0.003	<0.003	<0.003
ベンゼン	mg/L	<0.01	_	_	_		_	<0.02	_	_	_	<0.02	<0.02	<0.02
セレン及びその化合物		-					_	<0.01	_		_	<0.01	<0.01	
ほう素及びその化合物	mg/L										<1.0			<0.01
	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0		<1.0		<1.0	<1.0	<1.0
ふっ素及びその化合物 アンモニア性窒素、亜硝酸性窒素	mg/L	0. 15	0. 21	0. 17	0. 17	0. 17	0. 19	0. 19		0.17	0. 19	0. 21	0. 13	0. 17
及び硝酸性窒素含有量	mg/L	17.8	16. 7	17. 3	14.0	13. 4	15. 4	14. 6	14. 6	14. 4	15. 9	19. 2	13. 4	15. 9
1, 4-ジオキサン	mg/L	<0.05	_	_	_	_	_	<0.05	_	_	_	<0.05	<0.05	<0.05
		*												

表 2-29(1) 精密試験分析結果(放流水-1)

	****		2-2		(1)			万竹竹		<u> </u>			_	_		
測定項目	単位	水質基準		月		月		月		月	8			月	1 (
実施日	_		4	18	2		6	20	4	18	1	15		19	3	17
水温	$^{\circ}\mathbb{C}$		19. 0	20.0	20.0	21.5	22.0	23. 0	24. 0	24. 0	25. 5	26. 0	25.0	25. 0	25. 0	24. 0
透視度	c m		>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
水素イオン濃度	_	5.8~8.6	6.74	6.65	6.70	6.89	6.70	6.84	6. 77	6.83	6.70	6.80	6. 78	6.81	6.82	6.75
蒸発残留物	mg/L		250	230	210	240	260	260	270	300	270	240	250	250	280	270
強熱残留物	mg/L		180	180	150	200	170	210	190	200	190	200	170	180	210	220
溶解性物質	mg/L		240	230	190	230	250	260	260	290	270	240	240	250	270	250
浮遊物質量	mg/L	40 (30)	1.4	2. 7	3. 1	3. 3	2.8	1.6	3. 2	2.0	1.4	1.1	1.3	2.0	1.2	1.3
アルカリ度	mg/L		59	55	52	63	52	55	58	63	56	62	58	66	61	55
生物化学的酸素要求量	mg/L	15(15)	2. 2	3. 2	3. 4	4. 7	3.7	2.9	2.7	2.8	1.9	3. 1	1.6	3. 5	2. 7	1. 9
化学的酸素要求量	mg/L		7.8	8.6	8.7	8.8	8.4	7. 2	7. 9	7.3	7.6	7. 6	7. 1	7. 7	7. 1	7. 1
アンモニア性窒素含有量	mg/L		0.66	0.42	0.28	2.77	<0.16	0.34	0.40	<0.16	0.33	2. 16	0. 25	1.81	1.72	0.85
亜硝酸性窒素含有量	mg/L		0.06	0.07	0.03	0.11	<0.02	0.04	0.05	<0.02	0.04	0.13	<0.02	0.11	0.11	0.06
硝酸性窒素含有量	mg/L		4. 27	4. 42	5. 32	5. 55	5. 88	4. 78	4. 86	4. 66	6. 28	6. 49	5. 78	4. 43	5. 98	6.04
有機性窒素含有量	mg/L		0.85	0.82	1.11	1.05	1. 17	0.79	1.05	0.80	0.78	0.74	0.75	0.85	0.79	0.66
窒素含有量	mg/L	120 (60)	5.84	5. 73	6. 73	9.48	7.05	5. 95	6. 35	5. 46	7. 44	9. 52	6. 79	7. 20	8. 61	7.61
燐酸イオン態燐含有量	mg/L		0.36	0.65	1.02	0. 21	1. 28	0. 33	0.43	0. 24	0.88	0. 23	1.85	0. 20	0. 26	0.75
燐含有量	mg/L	16(8)	0.40	0.81	1. 17	0.37	1.50	0.43	0.61	0.34	0.98	0.34	2. 08	0.34	0.36	0.84
大腸菌群数	個/c m³	1,000	0	0	0	0	0	0	0	5	0	0	0	0	0	0
よう素消費量	mg/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ノルマルヘキサン抽出物質含有量	mg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0.1	_	_	_	_	-	_	_	_	<0.01	_	_	_	_	_
フェノール類含有量	mg/L	1	_	_	ı	_	-	_	_	_	<0.50	l	_	_	_	_
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	不検出	_	_	_	_	_	_	_	_	<0.001	_	_	_	_	_
クロム含有量	mg/L	0.5	_	_	_	_	_	_	_	_	<0.05	_	_	_	_	_
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀	mg/L	0.005	_	_	1	_	_	_	-	_	<0.0005	-	_	_	-	_
その他の水銀化合物 トリクロロエチレン	mg/L	0. 1	_	_		_		_	_	_	<0.002	_	_	_	_	_
テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	不検出	-	-	_	-	_	-	-	-	<0.0005	-	-	-	-	_
有機燐化合物	mg/L	不検出		_	_	_	_	_	_	_	<0.1	_	_	_	_	_
ポリ塩化ビフェニル	mg/L	0,003		_	_	_		_	_	_	<0.0005	_	_	_	_	_
ジクロロメタン	mg/L	0. 2		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02
四塩化炭素	mg/L	0. 02		<0.002	<0.002		<0.002	<0.002		<0.002	<0.002	<0.002				<0.002
1,2-ジクロロエタン	mg/L	0. 04	-	-	-	-	_	-	-	-	<0.004	-	-	-	-	-
1,1-ジクロロエチレン	mg/L	1	_	_	_	_	_	_	_	_	<0.02	_	_	_	_	_
シス1, 2-ジクロロエチレン	mg/L	0. 4	_	_	_	_	_	_	_	_	<0.04	_	_	_	_	_
1, 1, 1-トリクロロエタン	mg/L	3		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	0.06		-	_	_	_	-	-	-	<0.006	-	-	-	_	_
1, 3-ジクロロプロペン	mg/L	0. 02		_	_	_	_	_	_	_	<0.002	_	_	_	_	_
チウラム	mg/L	0.06		_	_	_	_	_	_	_	<0.006	_	_	_	_	_
シマジン	mg/L	0.03		_	_	_	_	_	_	_	<0.003	_	_	_	_	_
チオベンカルブ	mg/L	0. 2		_	_	_	_	_	_	_	<0.02	_	_	_	_	_
ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	0. 1	-	-		_	_	-	-	-	<0.01	_	_	-	_	
ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	1	0.12	0. 15	0. 16		0. 12	0. 16		<0.10	<0.10	0. 12		0. 12	0. 15	0. 18
アンモニア、アンモニウム化合物、亜硝	mg/L	100		4. 66	5. 46		5. 88	4. 96		4. 66	6. 45	7. 48		5. 26	6. 78	6. 44
酸化合物及び硝酸化合物																
1,4-ジオキサン	mg/L	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

表 2 - 2 9 (2) 精密試験分析結果(放流水-2)

		衣		•	2)		八 映力			(流水)		_		_	
測定項目	単位	水質基準		1月	1 2	2月	1	月	2	月		月	最大	最小	平均
実施日	_		7	21	5	19	9	23	5	20	6	19	-	-	_
水温	$^{\circ}$ C		22. 0	22.0	20.5	19.0	17.0	17. 5	16.5	16.0	16.5	16.0	26. 0	16.0	21. 1
透視度	c m		>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
水素イオン濃度	-	5.8~8.6	6. 99	6. 78	6.80	6.64	6.74	6.77	6. 78	6.64	6.50	6.68	6. 99	6.50	6.75
蒸発残留物	mg/L		240	270	230	230	220	230	200	210	210	210	300	200	240
強熱残留物	mg/L		180	200	200	190	200	210	180	180	150	160	220	150	190
溶解性物質	mg/L		240	260	230	220	220	230	190	200	190	210	290	190	240
浮遊物質量	mg/L	40 (30)	1.4	4. 4	<1.0	1.2	<1.0	1. 1	1.0	1.3	1.9	1.4	4. 4	<1.0	1.8
アルカリ度	mg/L		80	60	58	55	55	57	56	53	55	65	80	52	59
生物化学的酸素要求量	mg/L	15 (15)	1. 7	3.0	1. 7	2.4	1.9	1.6	2. 1	2.8	2. 1	2. 9	4. 7	1. 6	2. 6
化学的酸素要求量	mg/L		6.8	7.4	7.8	7.6	6. 2	6.3	5. 9	6. 2	6.5	7.8	8.8	5. 9	7. 4
アンモニア性窒素含有量	mg/L		6. 10	0.33	2. 11	1. 49	0.83	1.87	1. 22	0. 93	0.69	2. 47	6. 10	<0.16	1. 25
亜硝酸性窒素含有量	mg/L		0.13	0.03	0.15	0. 13	0.07	0.10	0.09	0. 10	0.09	0. 19	0. 19	<0.02	0.08
硝酸性窒素含有量	mg/L		3.61	6. 55	5. 86	5. 02	4. 50	4. 20	4. 88	4. 24	4. 17	4.00	6. 55	3. 61	5. 07
有機性窒素含有量	mg/L		0.70	1.06	0.78	0.84	0.65	0. 63	0. 58	0.71	0.72	0.30	1. 17	0.30	0.80
窒素含有量	mg/L	120 (60)	10. 5	7. 97	8.90	7. 48	6.05	6. 80	6. 77	5. 97	5. 67	6. 95	10. 5	5. 46	7. 20
燐酸イオン態燐含有量	mg/L		0.87	1.71	0.76	0.66	0. 20	0.82	0.30	1. 03	0.88	0. 33	1.85	0.20	0.68
燐含有量	mg/L	16 (8)	1.02	2. 02	0.86	0.83	0.30	1. 08	0. 37	1. 15	1. 01	0. 45	2. 08	0.30	0.82
大腸菌群数	個/cm³	1,000	0	0	0	0	0	0		0	0	0	5	0	0
よう素消費量	mg/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
/ルマルヘキサン抽出物質含有量	mg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	mg/L	0. 1	_	_	_	_	_	_	<0.01	_	_	_	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	_	_	_	_	_	_	<0.50	_	_	_	<0.50	<0.50	<0.50
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	不検出	_	_	_	_	_	_	<0.001	_	_	_	<0.001	<0.001	<0.001
クロム含有量	mg/L	0.5	_	_	_	_	_	_	<0.05	_	_	_	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀		0. 005	_		_			_	<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
その他の水銀化合物	mg/L														
トリクロロエチレン	mg/L	0. 1	_	_		_	_		<0.002	_	_	_	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005				<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	不検出	_	_		_	_		<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
有機燐化合物	mg/L	不検出		_		_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	0.003	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	0.02	<0.002	<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	0.04	_	_	_	_	_	_	<0.004	_	_	_	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	1	_	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
シス1,2-ジクロロエチレン	mg/L	0. 4	-	-		_	-		<0.04	-	-	-	<0.04	<0.04	<0.04
1,1,1-トリクロロエタン	mg/L	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	0.06	_	_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
1,3-ジクロロプロペン	mg/L	0. 02	_	_	_		_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
チウラム	mg/L	0.06	_	_	_		_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
シマジン	mg/L	0. 03	_	_	_		_	_	<0.003	_	_	_	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	0. 2	-	-	-	-	-	-	<0.02	-	-	-	<0.02	<0.02	<0.02
ベンゼン	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	0. 1	-			_	-	_	<0.01	_	_	-	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	1	0.13	0.14	0. 12	0.14	0. 16	0. 14	<0.10	0. 14	0. 12	0. 16	0. 19	<0.10	0. 12
アンモニア、アンモニウム化合物、亜硝酸化合物及び硝酸化合物	${\rm mg}/L$	100	6. 18	6.71	6.85	5. 75	4. 90	5.05	5. 46	4.71	4. 54	5. 18	7. 48	4. 54	5.65
1,4-ジオキサン	mg/L	0. 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
													-	-	-

表 2 - 3 0 幹線調査分析結果

	測定項目	単位	排除基準	(Ī)	2	(3)	(4)	(5)	(6)
	採水月日					5月8日	5月8日	5月8日	5月8日
	採水時刻					10:20	10:50	9:55	9:30
	カドミウム及びその化合物	mg/L	不検出			<0.001	<0.001	<0.001	<0.001
	シアン化合物	mg/L	0.1	1		<0.01	<0.01	<0.01	<0.01
	有機燐化合物	mg/L	不検出	1		<0.1	<0.1	<0.1	<0.1
	100000000000000000000000000000000000	mg/L	0.1			<0.01	<0.01	<0.01	<0.01
	六価クロム化合物		0. 1	_					
	砒素及びその化合物	mg/L	0. 05	_		<0.01	<0.01	<0.01	<0.01
	水銀及びての化合物 水銀及びアルキル水銀	mg/L				<0.005	<0.005	<0.005	<0.005
	その他の水銀化合物	mg/L	0.005			<0.0005	<0.0005	<0.0005	<0.0005
	アルキル水銀化合物	mg/L	不検出			<0.0005	<0.0005	<0.0005	<0.0005
	ポリ塩化ビフェニル	mg/L	0.003			<0.0005	<0.0005	<0.0005	<0.0005
政	トリクロロエチレン	mg/L	0. 1			<0.002	<0.002	<0.002	<0.002
	テトラクロロエチレン 	mg/L	0. 1			<0.0005	<0.0005	<0.0005	<0.0005
令 処	ジクロロメタン	mg/L	0. 2			<0.02	<0.02	<0.02	<0.02
	四塩化炭素	mg/L	0. 02			<0.002	<0.002	<0.002	<0.002
で理	1,2-ジクロロエタン	mg/L	0.04			<0.004	<0.004	<0.004	<0.004
	1, 1-ジクロロエチレン	mg/L	1			<0.02	<0.02	<0.02	<0.02
定困	シス1, 2-ジクロロエチレン	mg/L	0.4			<0.04	<0.04	<0.04	<0.04
	1, 1, 1-トリクロロエタン	mg/L	3	\		<0.001	<0.001	<0.001	<0.001
め難	1, 1, 2-トリクロロエタン	mg/L	0.06			<0.006	<0.006	<0.006	<0.006
	1, 3-ジクロロプロペン	mg/L	0.02			<0.002	<0.002	<0.002	<0.002
る物	チウラム	mg/L	0.06			<0.006	<0.006	<0.006	<0.006
., 55	シマジン	mg/L	0.03			<0.003	<0.003	<0.003	<0.003
物質	チオベンカルブ	mg/L	0.2			<0.02	<0.02	<0.02	<0.02
斤斤	ベンゼン	mg/L	0.1			<0.01	<0.01	<0.01	<0.01
質	セレン及びその化合物	mg/L	0.1			<0.01	<0.01	<0.01	<0.01
	ほう素及びその化合物	mg/L	10			<1.0	<1.0	<1.0	<1.0
	ふっ素及びその化合物	mg/L	1			0. 24	0. 20	0. 15	0. 13
	1, 4-ジオキサン	mg/L	0.5			<0.05	<0.05	<0.05	<0.05
	フェノール類含有量	mg/L	1			<0.50	<0.50	<0.50	<0.50
	銅含有量	mg/L	1			<0.10	<0.10	<0.10	<0.10
	亜鉛含有量	mg/L	1			<0.10	<0.10	<0.10	<0.10
	溶解性鉄含有量	mg/L	1			<0.10	<0.10	<0.10	<0.10
	溶解性マンガン含有量	mg/L	1			<0.10	<0.10	<0.10	<0.10
	クロム含有量	mg/L	0.5			<0.05	<0.05	<0.05	<0.05
	アンモニア性窒素、亜硝酸性窒素	mg/L	380			24. 1	21. 5	21. 5	17. 6
条	及び硝酸性窒素含有量 生物化学的酸素要求量	mg/L	600			230	200	170	140
例処で理	浮遊物質量	mg/L	600			180	230	140	120
定可	ノルマルヘキサン抽出物質含有量	mg/L	30			17	12	9	10
る物	水素イオン濃度	_	5~9			7. 42	7. 31	7. 40	7. 38
物質質	水温	°C	45			21. 0	20. 5	19. 0	18. 5
貝	よう素消費量	mg/L	220			21	14	10	10
	<u> </u>	_	220			黄濁	黄濁	微黄濁	微黄濁
その他	<u> </u>	mg/L				110	110	91	74
/+++ z .		上流市町	'杜名			110	110	01	• • •
備考	① 富士北麓 1 号幹線	(欠番)	415H						
	② 富士北麓 1 号幹線	(欠番)							
		富士河口	洪田田工						
									
	⑥ 富士北麓 2 号幹線			Z					
	※①、②は、市町村合併	により欠) 留としてい	る。					

表2-31 反応タンク運転状況

					11.			/	E #41/17					
項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
流入	最大	29, 882	27, 330	35, 876	26, 558	38, 676	28, 901	26, 845	28, 101	28, 645	27, 353	27, 918	27, 234	38, 676
下 水 量	最小	20, 695	20, 045	20, 262	22, 210	23, 075	22, 123	22, 044	22, 390	22, 195	24, 662	24, 931	23, 750	20, 045
(m³/日)	平均	22, 402	22, 385	22, 601	23, 794	25, 850	24, 471	23, 145	23, 257	24, 742	26, 056	26, 405	24, 847	24, 155
反応タンク	最大	31, 370	28, 690	37, 140	27, 890	39, 790	30, 050	28, 210	29, 240	29, 630	28, 390	29, 090	28, 350	39, 790
流入水量	最小	22, 100	21, 690	21,870	23, 540	24, 350	23, 280	23, 250	23, 540	23, 300	25, 690	25, 950	24, 840	21,690
(m³/日)	平均	23, 827	23, 781	23, 901	25, 108	27, 251	25, 778	24, 332	24, 390	25, 859	27, 128	27, 580	26, 002	25, 404
返送	最大	21,720	18, 420	24, 140	19, 780	26, 220	19, 940	17, 540	20, 570	18, 400	18, 130	18,080	18, 990	26, 220
汚 泥 量	最小	13, 910	13, 690	13, 310	14, 710	15, 110	14, 340	14, 330	14,600	14, 480	14, 630	16, 280	15, 810	13, 310
(m³/日)	平均	15, 035	14, 996	15, 166	17, 290	17, 217	16, 605	15, 128	15, 390	16, 125	16, 949	17, 119	17, 296	16, 192
返送	最大	72.0	70. 2	72.8	70. 9	66.4	80. 4	64. 1	70. 3	64. 5	64. 9	63.9	68.6	80.4
汚 泥 率	最小	61. 1	61. 1	60.9	62. 1	61.5	61. 2	60.0	62. 0	61.0	55. 6	60.8	61.3	55. 6
(%)	平均	63. 1	63. 0	63. 3	68.8	63. 1	64. 4	62. 2	63. 1	62.4	62. 5	62. 1	66. 5	63. 7
余 剰	最大	395	399	319	364	419	384	382	364	473	390	489	393	489
汚 泥 量	最小	283	232	244	295	156	192	308	299	289	259	257	311	156
(m³/日)	平均	351	317	286	323	347	310	350	345	339	338	380	350	336
送 風 量	最大	85, 541	88, 898	82, 690	79, 635	84, 943	85, 598	94, 605	110,020	98, 079	84, 061	82, 807	83, 879	110, 020
	最小	65, 905	65, 955	64, 229	67, 395	66, 311	60, 884	73, 491	70, 814	71, 368	63, 334	69, 417	60, 523	60, 523
(m³/目)	平均	74, 657	74, 825	72, 910	73, 573	77, 031	73, 404	83, 503	95, 744	79, 275	73, 234	76, 939	68, 984	76, 983
送 風	最大	3. 6	3. 7	3. 7	3. 2	3. 1	3. 4	4.0	4. 6	4. 1	3. 0	3. 1	3. 3	4.6
倍 率	最小	2. 1	2. 5	1.8	2. 6	1.7	2. 2	2.7	2. 9	2.7	2. 3	2.4	2. 2	1.7
(倍)	平均	3. 1	3. 2	3. 1	2. 9	2.9	2. 9	3.4	3. 9	3. 1	2. 7	2.8	2.6	3.0
滞留	最大	9. 2	9.3	9. 3	8.6	8.3	10. 1	8.7	8.6	8.7	7. 9	7.8	8. 2	10. 1
時 間	最小	6. 5	7. 1	5. 6	7. 3	5.5	7. 4	7. 2	6. 9	6.8	7. 1	7.0	7. 1	5. 5
(H r)	平均	8. 5	8.5	8.6	8. 1	7. 7	8. 2	8.3	8.3	7. 9	7. 5	7.4	7.8	8. 1

表2-32 反応タンク試験結果(1)

項	目		4月	5月	6月	7月	<u>8月</u>	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
		最大	21. 5	22. 5	24. 0	25. 5	26. 0	25. 5	25. 0	23. 0	21. 0	18. 0	17. 5	19. 0	26. 0
水。温	ı.	最小	19. 0	21. 0	22. 0	24. 0	24. 0	24. 5	22. 0	21. 0	18. 0	17. 0	16. 5	16. 5	16. 5
(℃)		平均	20.0	21. 7	23. 0	24. 5	25. 7	25. 1	23. 8	22. 2	19. 6	17. 5	16. 8	17. 6	21. 5
		最大	6.60	6. 62	6. 61	6. 58	6. 62	6.74	6.66	6.66	6. 59	6.60	6.60	6.60	6. 74
	ML	最小	6. 41	6. 47	6. 45	6. 46	6. 40	6.46	6. 45	6. 49	6. 35	6. 38	6. 37	6. 31	6. 31
		平均	6.50	6.54	6.54	6. 52	6. 53	6.57	6.54	6.54	6.48	6.48	6. 47	6.48	6. 52
рΗ		最大	6.66	6.71	6.67	6.65	6.71	6.84	6. 73	6. 78	6.63	6.68	6.67	6.68	6. 84
	RS	最小	6.50	6.54	6. 53	6. 52	6. 43	6.60	6.54	6. 50	6.50	6.45	6.48	6. 47	6. 43
		平均	6. 57	6.62	6.60	6. 59	6. 63	6.66	6.63	6. 63	6. 56	6. 57	6. 57	6. 57	6.60
Б.О.		最大	0.7	0.8	0.9	0.9	0.9	0.9	1.0	0.9	0.7	0.7	0.7	0.7	1.0
DO (mg/L)		最小	0.5	0. 5	0.6	0.6	0.6	0. 5	0.5	0.4	0.5	0.5	0.5	0.5	0.4
(IIIg/L)		平均	0.6	0.6	0.8	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	0.6
MI 0.0	,	最大	2, 140	1, 940	1, 960	2,000	2,070	1, 780	1,970	2, 110	1,870	2, 180	2, 140	2,070	2, 180
MLSS (mg/L))	最小	1,710	1,430	1,710	1,730	1,440	1,580	1,680	1,840	1,470	2,040	2,000	1,840	1, 430
(mg/L)		平均	1,940	1,720	1,850	1,860	1,890	1,680	1,860	1,990	1,780	2, 100	2,060	1, 950	1,890
MLVS	0	最大	1,800	1,650	1,660	1,690	1,680	1,500	1,660	1,810	1,630	1,880	1,820	1,770	1,880
(mg/L)	3	最小	1,460	1, 250	1, 480	1,500	1, 190	1, 330	1, 390	1,540	1, 250	1,720	1,720	1,600	1, 190
(1118/12)		平均	1,650	1,480	1, 590	1,590	1,550	1,400	1,560	1,680	1,540	1, 790	1,770	1,660	1,610
MLVSS/MLS	ee .	最大	86.8	88. 3	87.6	87.8	84. 4	85. 5	85.7	86. 9	88.8	86. 9	87. 9	87. 2	88. 8
ML V 33/ ML	33	最小	83. 3	83. 9	84. 6	83. 6	78. 9	81.6	81.7	83. 2	83.0	83. 9	84. 6	83. 2	78. 9
(, -,		平均	85. 1	86. 4	85. 9	85. 7	82.1	83. 5	83.7	84.8	86.0	85.3	85. 9	85.4	85. 0
		最大	34	19	19	23	30	39	46	47	55	60	49	55	
	ML	最小	17	14	17	17	22	29	37	35	29	46	41	30	
S V 3 0		平均	26	17	18	20	25	36	41	41	44	52	44	39	
(%)		最大	97	79	72	81	96	98	94	94	95	96	96	97	98
	RS	最小	50	38	39	31	63	88	90	84	89	90	93	88	31
		平均	84	63	62	57	83	93	92	91	92	94	94	92	83
		最大	160	110	100	120	170	240	240	240	290	290	230	270	290
	ML	最小	100	96	94	95	110	180	200	190	200	220	200	160	94
SVI		平均	140	100	98	110	140	210	220	210	250	250	220	200	180
(mL/g)		最大	260	190	170	210	270	330	320	300	330	320	290	320	330
	RS	最小	160	120	120	110	180	260	260	250	280	250	260	240	110
		平均	220	160	150	160	210	300	290	280	300	270	270	270	240
BOD-SS		最大	0.24	0.35	0. 22	0. 21	0.38	0.22	0. 19	0.22	0.21	0. 20	0.21	0. 25	
負 荷	, ,	最小	0.19	0. 20	0.17	0.18	0.19	0.19	0. 15	0.15	0.20	0.18	0.18	0.19	0. 15
(kg/kg· ⊨	1)	平均	0. 22	0. 26	0.20	0. 20	0. 25	0.20	0.17	0.18	0.20	0.19	0. 19	0.24	0. 21
SRT(E	1)	平均	12. 2	12. 2	13.7	13. 9	11.7	14. 5	14.0	14. 9	14.6	15. 2	13. 1	13.9	13. 7

※年最大最小平均の欄の平均については、月間平均値の平均値である。

オスー33	表 2 -	- 3 3	反応タンク試験結果	(2)
-------	-------	-------	-----------	-----

											_	// // [H 4.07	V/1 H /	1 - 1	_ /										
項目		4	月	5	月	6	月	7	月	8	月	9	月	1 () 月	1 :	1月	1 2	2月	1	月	2	月	3	月	最大	最小	平均
酸素利用速度	_	31.0	23. 5	27.0	31. 4	26. 0	29.8	50.4	25. 0	55. 1	63. 6	40.5	56.9	34. 9	25. 3	29. 8	23. 4	14.6	23. 9	25. 9	30.8	19. 3	27.8	16. 7	27. 5	63. 6	14.6	31. 7
Rr (mg/L·H)	ATU	21.8	15.0	16. 3	18.8	15. 0	22. 1	34. 2	20.8	22. 0	32. 0	22. 0	32.4	17.5	16. 3	19. 7	17. 9	11.7	14. 9	15.8	19. 1	13.0	17.7	11.8	14. 1	34. 2	11.7	19. 2
酸素利用速度	_	14. 6	9.5	17.5	19. 3	14. 1	16.6	26.8	13. 4	26. 7	30. 7	23. 0	33.9	19. 5	12.8	14. 5	10.0	8.2	13. 5	12. 2	14. 3	8. 9	12.8	8. 2	14. 2	33. 9	8.2	16. 5
係数Kr(mg/g·H)	ATU	10.3	6.1	10.6	11.5	8.1	12. 3	18. 2	11. 1	10. 7	15. 5	12. 5	19.3	9.8	8.3	9. 6	7.6	6.6	8.4	7.4	8. 9	6.0	8.2	5.8	7.3	19. 3	5.8	10.0
備考		ΑΤ	J添加	量10m	ıg/L,	酸素和	川用速	度係数	はM	LSS	によ	る。																

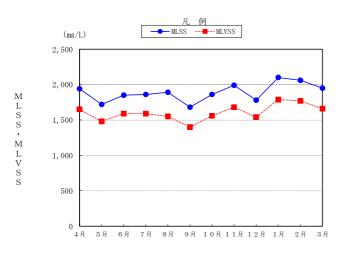


図2-18 反応タンクの管理状況(1)

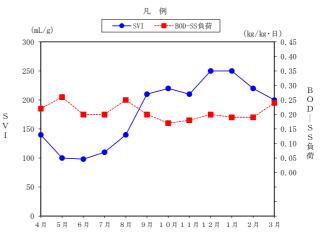
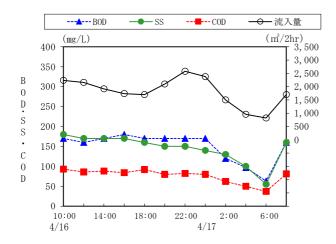


図2-19 反応タンクの管理状況(2)


表 2 - 3 4 反応タンク生物試験結果

					妻	₹2-3	3 4 E	マ 応タ	ンク生物	勿試験	結果					(単位:	個/c m³)	
	分		生物名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均
	鞭	動物性	Bodo•Monas	50	60	10	50	30		50	30		70	40	10	70	0	33
	毛虫	植物性	Peranema	60	120	60	240	70	120	120	250	90	120	20	60	250	20	111
	類	但初生	Entosiphon	40	250	860	1, 290	80	210	170	90	80	220	120	790	1, 290	40	350
原		原口目	Prorodon			10		10	30	40	10		10		40	40	0	13
		異毛目	Spirostomum	50	70	50	130	180	650	50	50	30	50		20	650	0	111
	繊	膜口目	Paramecium				50	10								50	0	5
			Litonotus			70									20	70	0	8
		裸口目	Amphileptus		70	10	70	70	90	80	120	60	70	20	80	120	0	62
生	毛	休日日	Coleps	100	60	80	60	80	40	40	40	80	30	60	60	100	30	61
			Trachelophyllum	140	40		130	90	100	260	60	60	30	100	60	260	0	89
		下毛目	Aspidisca	850	230	150	720	1,570	780	1,610	1,580	690	170	690	420	1,610	150	788
	虫	1	Euplotes		10						20					20	0	3
		ナスラ 目	Drepanomonas		20	40	10	30		30	10		20		30	40	0	16
動		緑毛目	Vorticella	6, 270	2,640	2, 970	1,680	1,830	1, 390	830	3, 470	1,610	3, 370	2,570	5, 190	6, 270	830	2,818
	類	冰七日	Epistylis	2, 250	2, 430	1,530	2,660	3,080	950	1,740	1,020	1,610	3, 440	3,840	1, 190	3,840	950	2, 145
		HIL 225	Acineta	20				10	10	50	30	30	60	20	40	60	0	23
		虫 目	Multifasciculatum										20			20	0	2
		<u> </u>	Tokophrya	60	80	50	60	80	70	90	100	40	160	110	60	160	40	80
物	根		Arcella	850	1, 430	980	900	360	1,760	960	690	1, 160	1, 230	1,810	1, 250	1,810	360	1, 115
	足	有 殼	Euglypha	330	200	230	140	220	430	50	70	190	70	100	160	430	50	183
	虫		Pyxidicula	910	270	130	80	160	440	130	290	560	400	200	530	910	80	342
	類	無殻	Amoeba	330	650	380	600	290	220	390	310	280	330	380	280	650	220	370
			Lecane	20	60	30	10		10	20	30	50				60	0	19
後	動	輪虫類	Lepadella	650	1,080	1, 440	580	260	260	90	300	200	260	480	410	-,	90	501
		11111	Rotaria	50	280	150	80	50	30	50	100	90	90	80	100	280	30	96
			Philodina Philodina	10												10	0	1
			Chaetonotus		20	20	30			10	130	40				130	0	21
生			Macrobiotus						20		10	20				20	0	4
			Dyplogaster	10		10	30	10	10	20			10	30	10	30	0	12
そ	\mathcal{O}	他の生	物数													0	0	0
総		生 物	数	13, 050	10,070	9, 260	9,600	8,570	7,620	6,880	8,810	6, 970	10, 230	10,670	10,810		6,880	9, 378
活	性	汚 泥 生	物数	12, 460	9, 200	8, 730	8, 550	8,080	7, 170	6,040	8, 160	6, 540	9,670	10, 100	10, 370		6, 040	8, 756
活	性	汚 泥 性	生 物(%)	95.5	91.4	94.3	89. 1	94. 3	94.1	87.8	92.6	93.8	94. 5	94.7	95.9	95. 9	87.8	93. 2

表 2-3 5 流入水及び放流水の経時変化(4/16~4/18)

			\	1.			
			流入	水			
	流入量	Bo	OD	S	S	CC)D
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
4/16 10:00	2, 240	170	381	180	403	93	208
12:00	2, 160	160	346	170	367	86	186
14:00	1,920	170	326	170	326	88	169
16:00	1,740	180	313	170	296	84	146
18:00	1,700	170	289	160	272	92	156
20:00	2, 100	170	357	150	315	80	168
22:00	2, 580	170	439	150	387	82	212
4/17 0:00	2, 380	170	405	140	333	80	190
2:00	1,500	120	180	130	195	62	93
4:00	960	97	93	100	96	50	48
6:00	820	63	52	55	45	37	30
8:00	1,700	160	272	160	272	81	138

			放 流	水			
	放流量	В	OD	S	S	CO)D
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
4/17 10:00	2, 220	3.0	6.7	2. 3	5. 1	8.3	18. 4
12:00	2,080	5.5	11.4	2. 4	5.0	8.8	18.3
14:00	1,920	5.2	10.0	2.6	5.0	9. 1	17.5
16:00	1,720	3.6	6.2	2. 7	4.6	8.8	15. 1
18:00	1,660	3.8	6.3	2.8	4.6	9.7	16. 1
20:00	2, 100	3.5	7.4	3.0	6.3	9.3	19.5
22:00	2,500	3.8	9.5	2. 9	7.3	9.2	23.0
4/18 0:00	2, 280	3. 9	8.9	2. 7	6. 2	9. 3	21.2
2:00	1,560	4.2	6.6	2. 9	4. 5	9. 2	14. 4
4:00	980	3.3	3. 2	1.9	1.9	8.6	8.4
6:00	900	3.4	3. 1	2.4	2.2	8.9	8.0
8:00	1,500	3. 2	4.8	2. 5	3.8	8. 4	12.6

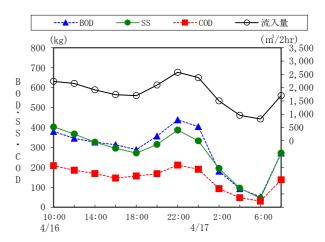
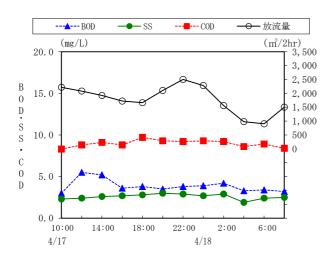



図 2 - 2 0 流入水濃度の経時変化 (4/16~4/17)

図2-21 流入水負荷量の経時変化 (4/16~4/17)

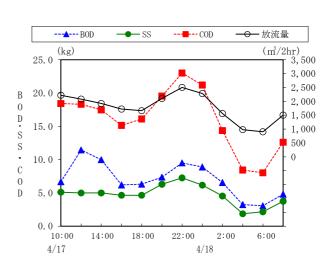


図 2-2 2 放流水濃度の経時変化 (4/17~4/18)

図2-23 放流水負荷量の経時変化 (4/17~4/18)

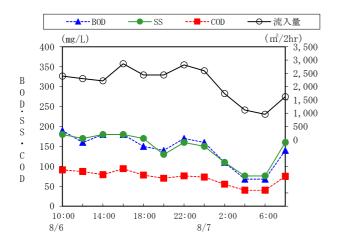
表 2-3 6 流入水及び放流水の経時変化(8/6~8/8)

			流入	水			
	流入量		OD .	-	S	CO)D
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
8/6 10:00	2, 400	190	456	180	432	91	218
12:00	2, 300	160	368	170	391	87	200
14:00	2, 220	180	400	180	400	79	175
16:00	2,860	180	515	180	515	94	269
18:00	2, 440	150	366	170	415	78	190
20:00	2, 440	140	342	130	317	70	171
22:00	2,820	170	479	160	451	76	214
8/7 0:00	2,600	160	416	150	390	73	190
2:00	1,740	110	191	110	191	55	96
4:00	1, 120	68	76	76	85	40	45
6:00	960	68	65	76	73	40	38
8:00	1,620	140	227	160	259	75	122

			放 流	水			
	放流量	В	OD	S	S	CO)D
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
8/7 10:00	2, 240	2.9	6. 5	1.7	3.8	6. 5	14.6
12:00	2, 260	3.5	7.9	1.8	4. 1	6.9	15.6
14:00	2, 160	4.0	8.6	1.8	3.9	7.7	16.6
16:00	2, 440	3.6	8.8	2. 1	5. 1	7. 1	17.3
18:00	2, 720	3.5	9.5	2. 1	5. 7	7. 9	21.5
20:00	2, 420	3.3	8.0	2.0	4.8	7.7	18.6
22:00	2, 760	3.2	8.8	2. 1	5.8	7.6	21.0
8/8 0:00	2, 540	3.2	8.1	2. 3	5.8	7.7	19.6
2:00	1,760	3. 1	5. 5	1.8	3. 2	7. 7	13.6
4:00	1, 100	3.8	4. 2	2.0	2.2	7. 2	7.9
6:00	1,000	3.7	3. 7	1.9	1.9	7. 2	7.2
8:00	1,640	2.8	4.6	1.8	3. 0	6. 7	11.0

COD

一一 流入量


(m³/2hr) 3,500

3,000

2,500

2,000

1,500

1,000 S S 400 500 0 300 C 0 200 D 100 22:00 10:00 14:00 18:00 2:00 6:00 8/68/7

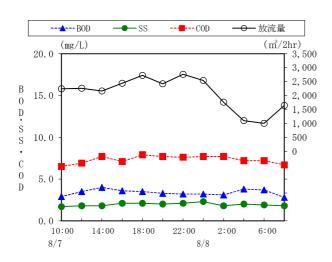
---**-**--- BOD

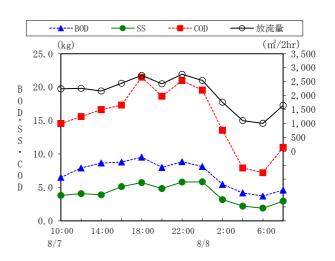
(kg) 800

700

600

500


В


0

D

流入水濃度の経時変化 (8/6~8/7) $\boxtimes 2 - 24$

流入水負荷量の経時変化 (8/6~8/7) 図 2 - 25

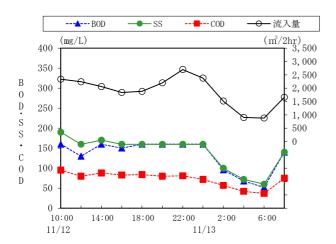

 $\boxtimes 2 - 26$ 放流水濃度の経時変化 (8/7~8/8)

図2-27放流水負荷量の経時変化 (8/7~8/8)

表 2-3 7 流入水及び放流水の経時変化(11/12~11/14)

	流入水											
			流 人	水								
	流入量	BO	OD	S	S	CC)D					
採水時間	(m³/2Hr)	濃度	負荷量	濃度	負荷量	濃度	負荷量					
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)					
11/12 10:00	2, 340	160	374	190	445	95	222					
12:00	2, 240	130	291	160	358	80	179					
14:00	2,060	160	330	170	350	88	181					
16:00	1,840	150	276	160	294	83	153					
18:00	1,880	160	301	160	301	84	158					
20:00	2, 200	160	352	160	352	80	176					
22:00	2,700	160	432	160	432	81	219					
11/13 0:00	2, 380	160	381	160	381	72	171					
2:00	1,520	96	146	100	152	57	87					
4:00	900	68	61	72	65	42	38					
6:00	880	52	46	60	53	37	33					
8:00	1,660	140	232	140	232	75	125					

	放流 水												
	放流量	В	OD	S	S	C	OD						
採水時間	(m³/2Hr)	濃度	負荷量	濃度	負荷量	濃度	負荷量						
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)						
11/13 10:00	2, 280	1.6	3.6	1.3	3.0	7.0	16.0						
12:00	2,040	1.7	3.5	1.6	3.3	7.3	14. 9						
14:00	1,920	1.7	3.3	1.2	2.3	7. 1	13.6						
16:00	1,680	2.0	3.4	1.4	2.4	7. 5	12.6						
18:00	1,760	2.0	3.5	1.6	2.8	7. 1	12.5						
20:00	1, 980	2. 1	4.2	1.3	2.6	7.4	14. 7						
22:00	2,640	2.2	5.8	1.7	4.5	7.4	19.5						
11/14 0:00	2, 420	2.3	5.6	1.3	3. 1	7.4	17. 9						
2:00	1,580	2.5	4.0	1.5	2.4	7.4	11.7						
4:00	920	2.8	2. 6	1.4	1.3	7. 2	6.6						
6:00	940	2.8	2.6	2.0	1.9	7. 1	6.7						
8:00	1,520	3.0	4.6	1.8	2.7	7.0	10.6						

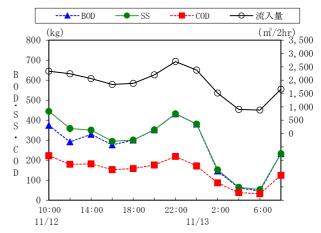
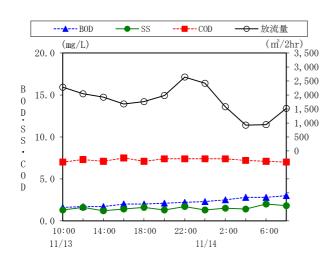



図 2-28 流入水濃度の経時変化 (11/12~11/13)

図2-29 流入水負荷量の経時変化 (11/12~11/13)

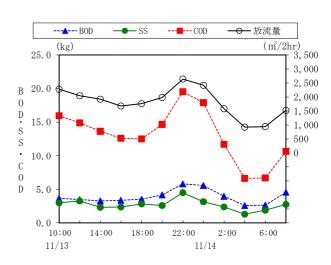
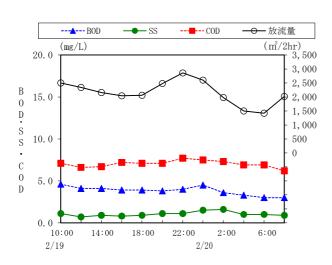



図2-30 放流水濃度の経時変化 (11/13~11/14)

図2-31 放流水負荷量の経時変化(11/13~11/14)

表 2-38 流入水及び放流水の経時変化(2/18~2/20)

	流入水											
				, .	-							
		流入量	BO	OD	S	S	CO)D				
採水時	間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量				
			(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)				
2/18 10	00:0	2, 560	120	307	170	435	79	202				
12	00:5	2, 400	140	336	150	360	82	197				
14	00:	2,020	170	343	170	343	87	176				
16	00:3	2,060	140	288	160	330	77	159				
18	00:8	1, 980	170	337	180	356	78	154				
20	00:0	2, 540	140	356	120	305	78	198				
22	00:5	2, 920	160	467	150	438	79	231				
2/19 0	00:0	2, 580	140	361	120	310	65	168				
2	00:5	1,840	82	151	89	164	45	83				
4	00:	1,400	59	83	59	83	34	48				
6	00:3	1, 380	44	61	38	52	23	32				
8	3:00	2,060	120	247	100	206	60	124				


			放 流	水			
	放流量	В	OD	S	SS	C	OD
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
2/19 10:00	2,500	4.6	11.5	1. 1	2.8	7. 1	17.8
12:00	2, 340	4. 1	9.6	0.7	1.6	6.6	15. 4
14:00	2, 160	4. 1	8.9	0.9	1.9	6. 7	14. 5
16:00	2,040	3.9	8.0	0.8	1.6	7. 2	14. 7
18:00	2,060	3.9	8.0	0.9	1.9	7. 1	14. 6
20:00	2, 480	3.8	9.4	1. 1	2. 7	7. 1	17. 6
22:00	2,860	4.0	11.4	1. 1	3. 1	7.7	22.0
2/20 0:00	2,600	4.5	11.7	1. 5	3. 9	7. 5	19. 5
2:00	1,980	3.6	7. 1	1.6	3. 2	7. 3	14. 5
4:00	1,500	3.3	5. 0	1.0	1.5	6. 9	10.4
6:00	1, 420	3.0	4. 3	1.0	1.4	6. 9	9.8
8:00	2, 020	3.0	6.1	0.9	1.8	6. 2	12.5

---**-**--- BOD --- SS ---- COD (m³/2hr) 3,500 (kg) 800 3,000 700 2,500 В 600 2,000 0 1,500 D 500 1,000 S S 500 4000 300 C 0 200 D 100 10:00 14:00 18:00 22:00 2:00 6:00 2/18 2/19

図 2 - 3 2 流入水濃度の経時変化 (2/18~2/19)

図 2 - 3 3 流入水負荷量の経時変化 (2/18~2/19)

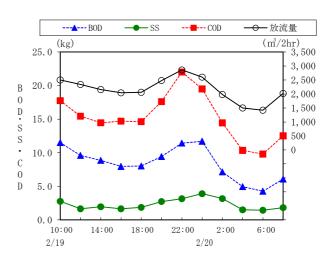


図 2-34 放流水濃度の経時変化 (2/19~2/20)

図 2 - 3 5 放流水負荷量の経時変化 (2/19~2/20)

表 2 - 3 9 汚泥処理運転状況

					r	r			衣 2	<u> </u>	17	/ L/C+_	世 野	V \ D L					ſ	T
	項		目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平均	計
生	固	形	分	(%)	0.41	0.51	0.48	0.53	0.60	0.49	0. 47	0.46	0. 49	0. 47	0.40	0. 43	0.60	0.40	0. 48	_
汚泥	引	抜	量	m³)	19, 248. 1	18, 108. 8	18, 656. 8	19, 483. 9	20, 601. 2	19, 905. 5	20, 166. 4	19, 202. 6	19, 835. 7	18, 728. 8	17, 382. 1	17, 771. 5	20, 601. 2	17, 382. 1	19, 091. 0	229, 091. 4
₽E.	固	形物	量	(kg)	79, 653	93, 061	89, 956	103, 040	124, 088	98, 352	95, 391	88, 631	97, 704	88, 102	68, 765	77, 266	124, 088	68, 765	92,001	1, 104, 009
重縮	固	形	分	(%)	4. 24	3. 74	3. 75	3. 61	3. 45	3. 59	3. 53	3. 58	3. 64	3. 62	3. 87	3. 90	4. 24	3. 45	3. 71	_
力汚	引	抜	量	(m³)	2, 168. 5	2, 382. 1	1, 985. 2	2, 321. 8	2,740.7	2, 548. 1	2, 440. 0	2, 378. 0	2, 434. 0	2, 238. 0	1,851.7	2, 089. 6	2,740.7	1, 851. 7	2, 298. 1	27, 577. 7
濃泥	固	形物	量	(kg)	91, 846	88, 983	74, 508	83, 812	94, 452	91, 573	86, 205	85, 110	88, 556	80, 950	71,690	81, 405	94, 452	71,690	84, 924	1, 019, 090
余	固	形	分	(%)	0.44	0.41	0.53	0.44	0. 43	0.40	0.44	0.40	0.32	0.49	0.57	0.56	0. 57	0.32	0.45	_
剰汚	引	抜	量	(m³)	10, 532. 6	9, 830. 3	8, 586. 2	10, 004. 3	10, 747. 7	9, 304. 8	10, 838. 5	10, 362. 0	10, 504. 0	10, 476. 7	10, 627. 2	10, 852. 8	10, 852. 8	8, 586. 2	10, 222. 3	122, 667. 1
泥		形物	量	(kg)	46, 178	40, 461	45, 886	44, 046	46, 483	36, 965	47, 963	41, 559	34, 020	50, 885	60, 210	60, 268	60, 268	34, 020	46, 244	554, 924
農給	固	形	分	(%)	0.44	0.38	0.44	0.36	0.46	0.38	0.41	0.56	0.49	0.46	0.47	0.47	0. 56	0.36	0.44	_
浴店 一	伳	給	量	(m³)	10, 522. 2	9, 879. 0	8, 637. 9	10, 027. 2	10, 853. 0	9, 365. 3	10, 959. 5	10, 512. 6	10, 684. 9	10, 615. 6	10, 648. 4	11, 032. 1	11, 032. 1	8, 637. 9	10, 311. 5	123, 737. 7
機泥	固	形物	量	(kg)	46, 097	37, 831	38, 025	36, 107	49, 485	35, 935	44, 965	58, 966	52, 444	48,830	49, 793	51,613	58, 966	35, 935	45, 841	550, 091
高	濃		度	(%)	0.10	0.10	0.10	0.10	0.10	0.10	0. 10	0.10	0. 10	0. 10	0.10	0. 10	0. 10	0.10	0. 10	_
分子	供	給	量	(m³)	49. 33	46. 13	48.81	60.31	66. 17	52. 80	53. 23	56. 85	45. 16	47. 09	51.05	59. 88	66. 17	45. 16	53. 07	636. 81
凝	薬泪	È率(%)}	農縮機	0.11	0.12	0.13	0.17	0. 13	0. 15	0. 12	0.10	0.09	0. 10	0.10	0. 12	0. 17	0.09	0. 12	_
集剤	供	給量	t (No	0.1)	24.74	24. 83	25. 81	26. 46	30. 90	22.60	24. 06	23. 98	22. 07	3. 38	7. 22	19. 48	30. 90	3. 38	21. 29	255. 52
微濃	薬	注率	₫ (No	0.1)	0.11	0.12	0. 13	0. 15	0. 12	0. 13	0. 11	0.09	0.07	0.09	0. 10	0. 11	0. 15	0.07	0. 11	_
縮	供	給量	t (No	0.3)	24. 59	21. 30	22. 99	33. 85	35. 27	30. 21	29. 18	32. 88	23. 09	43. 71	43.83	40. 40	43. 83	21. 30	31. 77	381. 28
)	薬	注率	₫ (No	0.3)	0.11	0. 12	0.13	0.18	0. 14	0. 16	0. 13	0.10	0. 11	0. 10	0. 10	0. 12	0. 18	0. 10	0. 13	_
脱船	끮	形	分	(%)	3.80	3.63	3.72	3.65	3. 46	3. 34	3. 43	3. 36	3. 29	3. 44	3. 54	3. 68	3.80	3. 29	3. 53	_
水 二	毌.	給	量	(m³)	3, 326. 8	3, 184. 4	2, 837. 2	3, 234. 4	3, 939. 0	3, 375. 2	3, 375. 6	3, 416. 0	3, 307. 5	3, 313. 5	2, 953. 8	3, 138. 8	3, 939. 0	2, 837. 2	3, 283. 5	39, 402. 2
機泥	固	形物	量	(kg)	126, 375	115, 561	105, 506	118, 212	136, 145	112, 835	115, 863	114, 656	108, 828	114, 004	104, 692	115, 523	136, 145	104, 692	115, 683	1, 388, 200
高	濃		度	(%)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	_
分 子 脱	供	給	量	(m³)	394. 44	303.45	289. 35	345.62	402.83	302. 96	300.01	300.93	295. 55	335. 95	339. 32	379. 26	402.83	289. 35	332. 47	3, 989. 67
凝水集・	薬注	率(%	s) No.1	脱水機	0.94	0.79	0.84	0.88	0.89	0.81	0.78	0.79	0.82	0.89	0.97	0.99	0. 99	0.78	0.87	_
剤	薬注	率(%	s) No.2	脱水機	0.82	0.73	0.73	0.71	0.78	0.68	0.63	0.74	0.77	0.78	0.95	0.77	0. 95	0.63	0. 76	_
脱水	含	水	率	(%)	70. 6	70. 1	70. 4	70. 1	70. 3	69. 7	70. 2	70.8	71. 3	71. 1	71.8	71. 1	71.8	69. 7	70.6	_
ケー	ケ	3	キ量	(t)	382.78	325. 56	314. 26	350.66	408.09	324. 47	336. 72	361. 90	341. 20	360. 14	353. 23	369. 52	408. 09	314. 26	352. 38	4, 228. 53
キ	固	形物	量	(kg)	112, 537	97, 342	93, 021	104, 847	121, 203	98, 314	100, 343	105, 675	97, 924	104, 080	99, 611	106, 791	121, 203	93, 021	103, 474	1, 241, 688

表 2 - 4 0	汚泥中試験.	汚泥返流水試験分析結果
\mathcal{X}^{2}	1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

_				表 2 -	-40	1777	十	C 171		八八叶心	奥分 伽	竹木					
		項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均
	重	水素イオン濃度	5.62	5.68	5. 62	5. 14	5. 18	6.03	5. 53	5. 58	5. 68	5. 94	5.66	5.68	6.03	5. 14	5.61
	力汚濃泥	固形分(%)	4.07	3. 75	3.85	3.88	3. 52	2.95	3.81	3. 26	3. 52	3. 56	3.86	3.67	4.07	2. 95	3.64
	縮	有機分(%)	93. 4	93.3	92.9	93. 3	93. 1	92.4	92. 6	93.5	93.6	93. 3	94. 1	93.0	94. 1	92. 4	93. 2
NT:	機	水素イオン濃度	6.45	6. 54	6. 57	6.46	6.38	6.38	6.50	6.55	6. 57	6.60	6.48	6. 52	6.60	6. 38	6. 50
汚泥	械汚 濃泥	固形分(%)	4.86	4.88	4. 31	4. 17	4. 32	4.41	4. 07	4. 20	4. 02	4. 28	4. 44	4.60	4.88	4. 02	4. 38
中	縮	有機分(%)	83.8	85. 1	85.0	84.8	81.8	82.5	82. 6	84. 9	86. 3	85.0	86.4	85. 5	86. 4	81.8	84. 5
中試験	脱水機	水素イオン濃度	5.87	5. 77	5. 44	5.42	5. 20	5.30	5. 47	5. 31	5. 67	5. 95	5.86	5.77	5.95	5. 20	5. 59
		固形分(%)	3.86	3. 64	3. 75	3.80	3. 39	3. 16	3. 50	3. 35	3. 20	3. 36	3.60	3.63	3.86	3. 16	3. 52
		有機分(%)	89. 1	90. 1	89. 7	90.0	88. 3	88.4	89. 7	90. 1	91. 2	91.0	91.9	90.8	91. 9	88. 3	90.0
	ゲー ルキ	含水率 (%)	71. 5	70.7	71. 0	71. 7	70. 9	70.2	71. 2	71.0	70.7	71.2	72.3	71.5	72. 3	70. 2	71. 2
		有機分(%)	93. 3	93.4	92. 7	93. 4	92.8	92.9	93. 7	93. 5	94. 2	94. 2	94. 1	93. 3	94. 2	92. 7	93. 5
	重力濃縮	水素イオン濃度	6.63	6.64	6.66	6. 27	6. 15	6.77	6.50	6.50	6.80	6.80	6.72	6.70	6.80	6. 15	6.60
		アルカリ度 (mg/L)	136	140	127	138	131	131	147	148	123	111	114	123	148	111	131
		浮遊物質量 (mg/L)	140	140	130	180	190	120	140	180	130	110	130	150	190	110	150
	縮	生物化学的酸素要求量 (mg/L)	300	290	250	380	400	230	280	330	230	210	250	270	400	210	290
		化学的酸素要求量 (mg/L)	95	100	94	110	110	81	100	120	84	74	80	89	120	74	95
汚		水素イオン濃度	7.04	6. 97	7.03	6. 99	6.94	7. 25	7.04	6. 99	7. 02	7. 13	7. 16	7.03	7. 25	6. 94	7.05
泥返	機械濃縮	アルカリ度 (mg/L)	53	49	56	63	110	72	55	66	57	57	53	53	110	49	62
流	機離	浮遊物質量 (mg/L)	160	140	100	92	140	130	130	140	160	210	210	150	210	92	150
返流水試	縮	生物化学的酸素要求量 (mg/L)	140	130	110	110	110	130	100	150	160	200	190	160	200	100	140
験		化学的酸素要求量 (mg/L)	69	63	57	53	57	60	61	61	68	90	81	63	90	53	65
		水素イオン濃度	5. 95	5. 77	5. 40	5.36	5. 18	5. 41	5. 32	5. 29	5. 73	5. 97	5. 93	5. 76	5. 97	5. 18	5. 59
	₁₁ 2	アルカリ度 (mg/L)	860	690	570	550	460	530	520	450	550	600	660	750	860	450	599
	脱水 脱水液	浮遊物質量 (mg/L)	920	790	690	700	730	710	840	880	650	660	730	750	920	650	750
	浟	生物化学的酸素要求量 (mg/L)	4, 300	3,800	4, 500	4,000	4, 900	3,600	4, 200	3, 900	2, 900	2,700	3, 300	4, 900	4, 900	2,700	3, 900
		化学的酸素要求量 (mg/L)	1,200	1,000	1,000	1,000	990	750	940	960	800	790	920	1,000	1, 200	750	950

表 2 - 4 1 汚泥測定結果(溶出試験)

項目	単 位	5月	8月	1 1月	2月	最 大	最 小	平 均
カドミウム又はその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
有機燐化合物	mg/L	_	<0.1	_	<0.1	<0.1	<0.1	<0.1
鉛又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素又はその化合物	mg/L	<0.005	0.009	0.005	0.006	0.009	<0.005	0.005
水銀又はその化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
ポリ塩化ビフェニル	${\rm mg}/L$	_	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
銅又はその化合物	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛又はその化合物	mg/L	0.20	0. 18	0.16	0.12	0.20	0.12	0. 17
鉄	${\rm mg}/L$	0.44	2.4	1.5	0.74	2.4	0.44	1.3
マンガン	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
トリクロロエチレン	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
テトラクロロエチレン	${\rm mg}/L$	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	_	<0.004	_	<0.004	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
シス-1,2-ジクロロエチレン	mg/L	_	<0.04	_	<0.04	<0.04	<0.04	<0.04
1,1,1-トリクロロエタン	mg/L	_	<0.001	_	<0.001	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	mg/L	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
チウラム	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
シマジン	mg/L	_	<0.003	_	<0.003	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
ベンゼン	mg/L	_	<0.01		<0.01	<0.01	<0.01	<0.01
セレン又はその化合物	mg/L	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
1,4-ジオキサン	mg/L	_	<0.05	_	<0.05	<0.05	<0.05	<0.05

表 2 - 4 2 汚泥測定結果(含有試験)

項目	単 位	5月	8月	11月	2月	最 大	最 小	平均
カドミウム	mg/kg	0.46	0.21	0.32	0.53	0.53	0.21	0.38
シアン化合物	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
鉛	mg/kg	3.0	5.9	5. 1	2.6	5. 9	2.6	4. 2
六価クロム	mg/kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
ひ素	mg/kg	1.3	2. 3	1.8	1.5	2.3	1.3	1. 7
水銀	mg/kg	0.12	0.18	0.12	0.11	0.18	0.11	0. 13
銅	mg/kg	84	98	91	92	98	84	91
ニッケル	mg/kg	3.8	4. 2	3. 9	2. 2	4. 2	2. 2	3. 5
亜鉛	mg/kg	200	260	200	150	260	150	200
鉄	mg/kg	1, 400	2, 100	1,600	1,300	2, 100	1, 300	1,600
マンガン	mg/kg	24	24	27	22	27	22	24
クロム	mg/kg	6. 2	5. 5	5. 4	5. 7	6. 2	5. 4	5. 7

表 2-43 放流河川調査結果 河川名:桂川(採水地点 深山橋[放流口下流約600m])

	項目	単 位	4/11	5/9	6/13	7/3	8/8	9/12	10/10	11/14	12/12	1/16	2/13	3/13	最大	最小	平均
_	採水時刻		9:10	9:15	9:10	9:15	9:15	9:10	9:15	9:15	9:15	8:50	9:10	9:15	-	-	_
	水温	$^{\circ}$	12. 0	12. 0	14. 0	16. 0	18. 5	19. 0	14.0	12. 5	10. 5	9. 5	10.5	12.0	19. 0	9. 5	13. 4
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	7. 76	7. 75	7. 74	7. 69	7. 74	7. 86	7. 86	7.80	7. 79	7. 75	7. 62	7. 76	7. 86	7. 62	7. 76
生	溶存酸素量	mg/L	10	10	9. 6	9. 4	9. 0	9. 0	9.9	10	11	11	10	10	11	9. 0	9. 9
活	生物化学的酸素要求量	mg/L	2. 2	3. 0	2. 4	1. 1	2. 4	3. 1	1. 9	4. 2	1. 6	3. 2	3. 2	3.6	4. 2	1. 1	2. 7
環	化学的酸素要求量	mg/L	2. 3	2. 0	2. 1	1. 9	1. 7	1. 9	1.2	1.8	1. 6	1. 3	2.1	2. 3	2. 3	1. 2	1. 9
境	浮遊物質量	mg/L	4. 8	2. 1	1. 6	1. 5	1. 7	1. 3	1.5	1. 1	1. 2	1. 7	2.3	3. 1	4.8	1. 1	2.0
項	大腸菌群数	個/c m³	18	41	37	50	38	29	39	19	15	26	21	12	50	12	29
目	窒素含有量	mg/L	1. 33	1. 33	1. 26	1. 35	1. 35	1. 01	1.07	1. 34	1. 27	1. 20	1.49	1. 37	1. 49	1.01	1. 28
	燐含有量	mg/L	0. 28	0. 22	0. 23	0. 19	0. 16	0. 15	0.14	0.18	0. 18	0. 22	0. 22	0. 26	0. 28	0.14	0.20
特	アンモニア性窒素含有量	mg/L	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	0. 17	<0.16	0. 17	<0.16	<0.16
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	0.03	0.03	<0.02	<0.02
項	硝酸性窒素含有量	mg/L	1.01	1.06	1.06	1. 15	1. 06	0.81	1.07	1. 16	0. 99	0. 98	1. 15	1.05	1. 16	0.81	1. 05
目	燐酸イオン態燐含有量	mg/L	0. 17	0. 17	0. 17	0. 15	0. 13	0. 11	0. 13	0.14	0. 14	0. 18	0. 17	0. 16	0. 18	0.11	0. 15

表 2 - 4 4 放流河川調査結果 河川名:桂川(採水地点 小明見橋[放流口上流約900m])

	項目	単 位	4/11	5/9	6/13	7/3	8/8	9/12	10/10	11/14	12/12	1/16	2/13	3/13	最大	最小	平均
_	採水時刻		9:05	9:05	9:05	9:05	9:10	9:05	9:05	9:05	9:05	8:40	9:05	9:05	-	-	_
	水温	$^{\circ}$	12. 0	12. 0	14. 0	16. 0	17. 0	17. 0	13. 5	12.0	10.0	8. 5	10.0	11. 5	17.0	8. 5	12. 8
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	8. 05	8.03	8.05	8. 00	8. 06	8. 08	8. 08	7. 95	8. 08	8.00	8. 14	8. 08	8. 14	7. 95	8. 05
生	溶存酸素量	mg/L	11	10	10	9.8	9.5	9. 5	10	10	11	11	11	11	11	9. 5	10
活	生物化学的酸素要求量	mg/L	1. 3	2. 0	1. 3	0.6	1.9	2.8	1.6	2.8	1.0	2.4	2.1	2.6	2.8	0.6	1. 9
環	化学的酸素要求量	mg/L	1. 7	1. 3	1. 1	1.0	1. 1	1. 3	0.7	0.5	0.6	0.9	0.8	1.0	1.7	0. 5	1. 0
境	浮遊物質量	mg/L	5. 1	2. 3	1. 6	1.6	1.2	1. 3	1.5	1. 1	<1.0	1.9	1.3	2.6	5. 1	<1.0	1.8
項	大腸菌群数	個/c m³	12	35	22	47	33	28	31	18	19	19	23	18	47	12	25
目	窒素含有量	mg/L	0.84	0.74	0.79	0.81	0.77	0. 76	0.84	0.81	0.70	0.75	0.77	0. 78	0.84	0.70	0.78
	燐含有量	mg/L	0. 13	0.15	0.13	0.14	0. 13	0. 11	0.11	0. 13	0.13	0. 14	0. 15	0. 15	0. 15	0.11	0. 13
特	アンモニア性窒素含有量	mg/L	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
項	硝酸性窒素含有量	mg/L	0.84	0.74	0. 79	0.81	0.77	0. 76	0.84	0.81	0.70	0. 75	0.77	0. 78	0.84	0.70	0.78
目	燐酸イオン態燐含有量	mg/L	0.11	0.12	0.12	0.11	0. 12	0. 10	0.11	0. 12	0.12	0. 12	0.14	0. 13	0.14	0.10	0. 12

表 2 - 4 5 臭気測定結果

項目	敷地境界										
採取年月日	令和6年8月13日	令和7年2月6日	規制値								
採取時刻	10:50	10:40									
臭気指数	<10	<10	15								

Ⅲ 峡東流域下水道

1 整備状況

(1) 全体計画及び現況

峡東流域下水道は、平成元年7月の供用開始より36年目を迎えている。

全体計画処理水量は 74,530 m/日、事業計画水量は 69,134 m/日 (水洗化水量は 55,873 m/日)であり、幹線は 61.8 kmが供用開始となっている。

供用開始区域内の面積は 3,929.19ha、人口は 83,771 人となっており、流入下水量は令和 6 年度平均で 30,005 ㎡/日である。

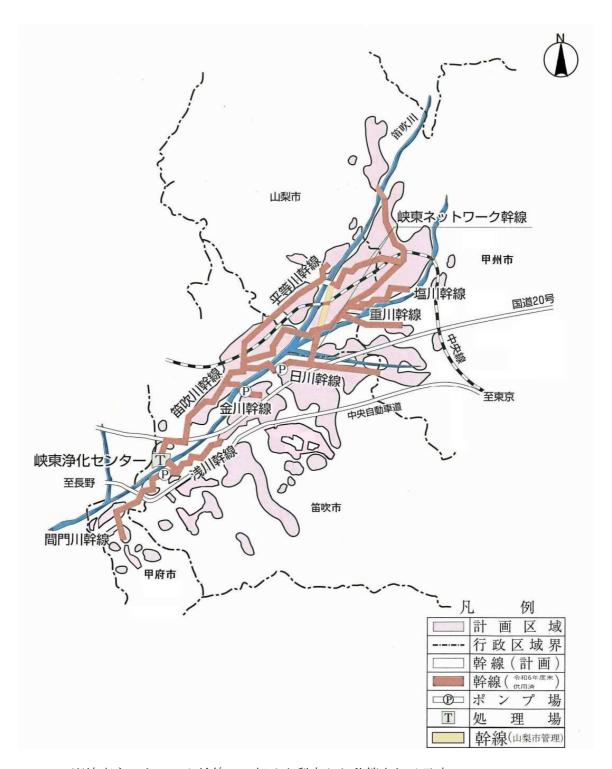

峡東流域下水道の全体計画及び現況を表 3-1 に、峡東流域下水道事業計画図を図 3-1 に、関連公共下水道市別水洗化状況を表 3-2 に、市別流入下水量を表 3-3 に示す。

表3-1 全体計画及び現況

		項目	全体	計画	事業	計画	供用開	始区域					
			(計画年次:昭和5	52年~令和17年)	(計画年次:昭和5	52年~令和10年)							
		計画面積	計画人口	計画面積	計画人口	面積	人口						
市町村名		(ha)	(人)	(ha)	(人)	(ha)	(人)						
甲	府	市	424. 8	2, 890	379.4	3, 740	261. 82	4, 257					
山	梨	市	1, 352. 8	27, 210	1, 099. 7	25, 440	890. 31	19, 566					
笛	笛吹市		3, 279. 9	61, 530	2, 589. 2	56, 260	2, 080. 66	43, 241					
甲	甲 州 市		1, 286. 0	14, 430	947.9	15, 100	696. 40	16, 707					
合		計	6, 343. 5	106, 060	5, 016. 2	100, 540	3, 929. 19	83, 771					
	「処理 日最 :		74, 530	m³∕∃	69,134 (水洗化水量 5	m³/日 55,873 m³/日)	_						
下水排除方式			分流式										
処	理力	式式			標準活性	生汚泥法							
幹線延長			63. ′	7 km	63.	7 km	管理延長 61.8 km						
ポンプ場数			3 筐	前所	3 筐	 節所	3 箇所						

[※]供用開始区域の面積、人口及び幹線延長は、令和7年4月1日現在の値を示す。

[※]供用開始区域の幹線延長は、県への管理移管を計画している公共管を含まない。

※峡東ネットワーク幹線の一部は山梨市から移管される予定。

図3-1 峡東流域下水道事業計画図

峡東流域下水道

表 3-2 関連公共下水道市別水洗化状況

			令	和 6 年 度	末			
		項目	行政	処理区域	水洗化	普及率	水洗化率	接続戸数
市名			人口	内人口	人口			
			A (人)	B (人)	C (人)	B/A (%)	C/B (%)	累計 (戸)
甲	府	市	4, 720	4, 257	3, 580	90. 2	84. 1	1, 359
Щ	梨	市	32, 512	19, 566	15, 828	60. 2	80.9	6, 973
笛	吹	市	66, 656	43, 241	31, 360	64. 9	72. 5	14, 588
甲	州	市	27, 987	16, 707	13, 683	59. 7	81. 9	5, 705
	計		131, 875	83, 771	64, 451	63. 5	76. 9	28, 625

- 注1) 行政人口は、令和7年3月31日現在の住民基本台帳の人口を示す。
- 注2) 処理区域内人口は、供用開始区域内人口を表し、令和7年4月1日公示分を含む。
- 注3) 甲府市の行政人口については、旧中道町行政人口分の人口を示す。
- 注4) 甲州市の行政人口については、旧大和村行政人口分を除いた人口を示す。

表3-3 市別流入下水量

	表 3 - 3 市別流入下水量													
市名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合 計	月平均
甲府市	67, 120	66, 885	72, 127	70, 550	72, 965	67, 577	69, 291	68, 147	64, 436	62, 277	56, 870	64, 166	802, 411	66, 868
山梨市	232, 294	252, 364	280, 900	334, 543	318, 496	320, 751	296, 310	272, 051	250, 151	218, 854	202, 615	225, 278	3, 204, 607	267, 051
笛吹市	435, 315	460, 410	463, 871	453, 298	475, 558	439, 738	432, 509	409, 552	429, 633	429, 778	386, 483	434, 940	5, 251, 085	437, 590
甲州市	128, 224	143, 587	165, 144	173, 458	155, 189	161, 092	154, 854	142, 743	126, 977	119, 907	105, 749	116, 765	1, 693, 689	141, 141
合 計	862, 953	923, 246	982, 042	1, 031, 849	1, 022, 208	989, 158	952, 964	892, 493	871, 197	830, 816	751, 717	841, 149	10, 951, 792	912, 649
日平均	28, 765	29, 782	32, 735	33, 285	32, 974	32, 972	30, 741	29, 750	28, 103	26, 801	26, 847	27, 134	年間日平均	30, 005

(2) 施設整備状況

施設整備状況については、令和7年3月までに峡東浄化センターにおける管理本館受変電設備が更新され、供用開始している。

令和6年度末の状況については、以下のとおりである。

①峡東浄化センター

水処理使用可能池数としては、最初沈殿池 6/10池、反応タンク 6/10池、最終沈殿池 6/10池となっており、処理能力は 46,350 ㎡/日である。

峡東浄化センターの全体平面図を図3-2に、フローシートを図3-3に、建築構造物概要を表3-4に、水処理機械設備概要を表3-5に、汚泥処理機械設備概要を表3-6に、電気設備概要を表3-7に、単線結線図を図3-4に、システム系統図を図3-5に示す。

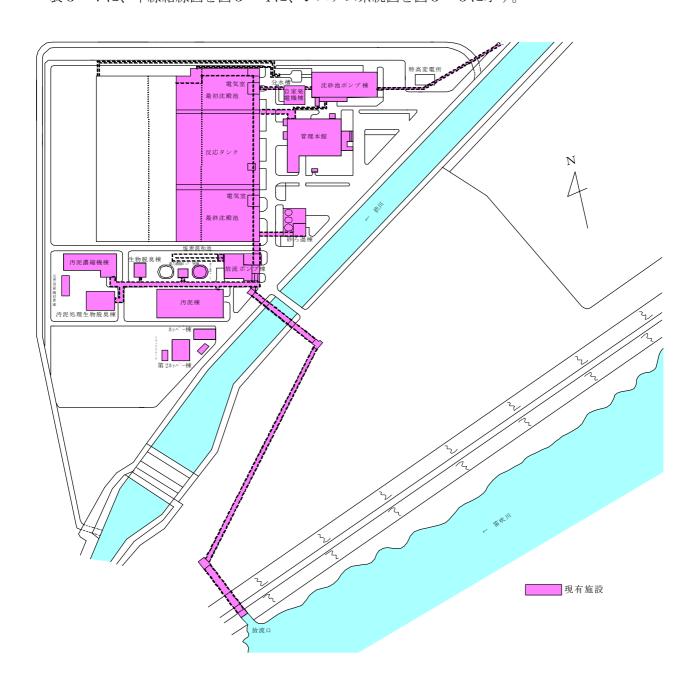


図3-2 峡東浄化センター全体平面図

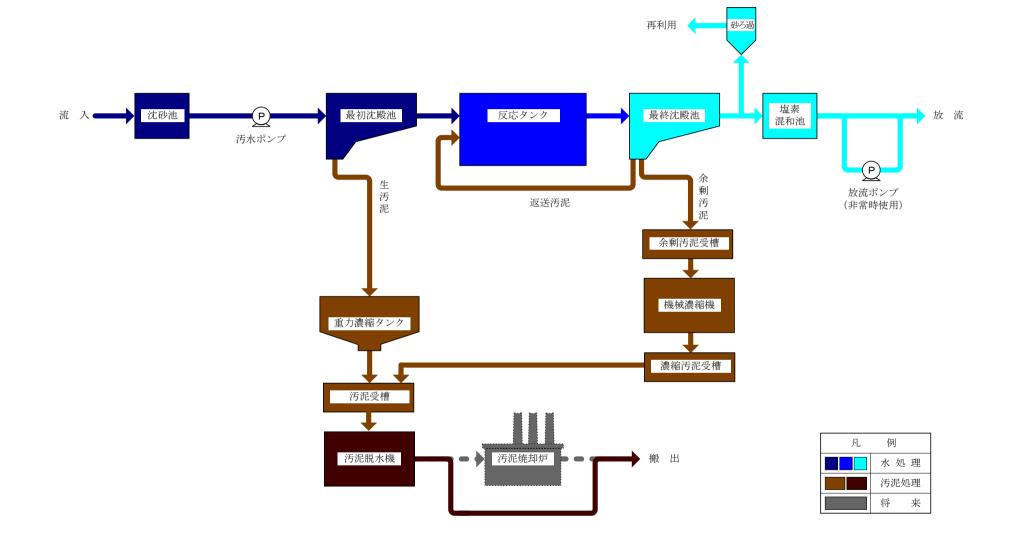


図3-3 峡東浄化センターフローシート

表3-4 峡東浄化センター建築構造物概要

項目	
施設	構造及び概要
管理本館	R C 造 地下 1 階、地上 3 階 建築面積 1,947 ㎡ 延床面積 3,727 ㎡ ブロワー室、自家発電機室、電気室、水質試験室、中央監理室、事務室、会議室、その他
沈 砂 池 ポンプ棟	R C 造 地下 2 階、地上 1 階 (一部中 2 階) 建築面積 1,388㎡ 延床面積 2,790㎡ 沈砂池スクリーン室、ポンプ室、ポンプモーター室、搬出作業室、電気室、脱臭機室、 その他
最初沈殿池電 気 室	R C 造 地上 1 階 建築面積 106㎡ 延床面積 106㎡ 電気室
最終沈殿池 電 気 室	R C 造 地上 1 階 建築面積 178㎡ 延床面積 178㎡ 電気室
砂ろ過棟	RC造 地下1階、地上1階 建築面積 146㎡ 延床面積 355㎡ ポンプ室、電気室
汚泥棟	R C 造 地下 1 階、地上 3 階 建築面積 1,111㎡ 延床面積 2,431㎡ ポンプ室、脱水機室、監視室、薬品注入機室、脱臭機室、電気室、その他
ホッパー棟	R C 造 地上 1 階 建築面積 94㎡ 延床面積 94㎡ 搬出室
第2ホッパー棟	R C造 地上 2 階 建築面積 79 ㎡ 延床面積 138 ㎡ 搬出室
汚泥濃縮機棟	R C造 地下 1 階、地上 2 階 建築面積 559㎡ 延床面積 1,309㎡ ポンプ室、濃縮機室、脱臭機室、電気室、搬出室、換気ファン室、ホッパー室、その他
放流ポンプ棟	R C 造 地下 1 階、地上 1 階 建築面積 458㎡ 延床面積 475㎡ ポンプ室、滅菌室、電気室、換気ファン室、その他
重力濃縮ポンプ室棟	RC造 地下1階、地上2階 建築面積 59㎡ 延床面積 172㎡ ポンプ室、その他
生物脱臭棟	R C 造 地上 1 階 建築面積 72 ㎡
汚 泥 処 理生物脱臭棟	R C 造 地下 1 階、地上 1 階 建築面積 260 ㎡ 延床面積 311 ㎡ 生物脱臭室
自家発電機棟	RC造 地上1階 建築面積 124㎡ 延床面積 121㎡ 発電機室

表3-5 峡東浄化センター水処理機械設備概要

項目	4# 7# T7 ~ W A4L	田 七 = 11. /#
設備	構造及び能力	現有設備
	幅2.0m×深3.4m×長14.4m (1池当たり)	2 池
	流入ゲート(外ネジ式鋳鉄製)	2 門
	幅0.8m×高1.5m×2.2kW	
	粗目スクリーン	2 基
	水路幅1.4m×水路深4.3m×目幅100mm	
	細目スクリーンかすかき上げ機(単一レーキ間欠式自動除塵機)	2 基
	水路幅1.4m×水路深4.5m×目幅20mm×1.5kW	
	スクリーンかす搬出機(トラフ型ベルトコンベヤ)	1 台
	幅600mm×1.5kW×2	
	スクリーンかす破砕機(二軸せん断式)	1 基
	処理量1.0 m³/h×7.5kW	
	スクリーンかす移送タンク (ステンレス鋼板製)	1 基
	容量1.5 m³	. ,
	スクリーンかす移送機(ジェットポンプ式)	1 台
	$\phi 80 \times 0.7 \mathrm{m}^3 / \mathrm{min} \times 15 \mathrm{m}$. ++-
	スクリーンかす分離機(連続かき上げ式)	1 基
	処理量1.0㎡/h×0.75kW	4 ±
	スクリーンかす脱水機(スクリュー式)	1 基
	処理量1.0㎡/h×3.7kW	1 tr
	スクリーンかすホッパー (電動カットゲート式)	1 基
	容量 3 m ³ ×0.75kW×2	1 #
》	スカム分離機(回転ドラムスクリーン)	1 基
沈 砂 池 ポンプ設備	処理能力4 m³/min×目幅3 mm×1.5kW沈砂かき上げ機(∇バケットダブルチェーンコンベヤ)	1 基
かとノ政備	池寸法幅2m×高さ5.1m×長さ14.1m	1 左
	他り伝幅2m~同さ3.1m~及さ14.1m かき寄量1.5m ³ /h×2.2kW	
		2 台
	$\phi 100 \times 1.0 \text{m}^3 / \text{min} \times 24 \text{m} \times 11 \text{kW}$	2 L
	沈砂流出トラフ (U型流水トラフ式)	1 基
	トラフ幅600mm	1 坐
	沈砂移送タンク(ステンレス鋼板製)	1 基
	容量1.5 m ³	1 2
	沈砂移送機 (ジェットポンプ式)	1 台
	$\phi 80 \times 0.9 \mathrm{m}^3 / \mathrm{min} \times 15 \mathrm{m}$	
	沈砂分離機(スクリューコンベヤ式)	1 基
	处理量1.6㎡/h×3.7kW	
	沈砂ホッパー(電動カットゲート式)	1 基
	容量3 m ³ ×0.75kW×2	
	圧力水移送ポンプ (片吸込渦巻ポンプ)	1 台
	$\phi 125 \times \phi 100 \times 2.2 \mathrm{m}^3 / \mathrm{min} \times 15 \mathrm{m} \times 11 \mathrm{kW}$	
	圧力水ポンプ (片吸込多段渦巻ポンプ)	1 台
	$\phi 150 \times 2.2 \mathrm{m}^3 / \mathrm{min} \times 70 \mathrm{m} \times 45 \mathrm{kW}$	
	ポンプ井水中撹拌機 (フリクト水中ミキサー)	1 台
	撹拌能力約150㎡	
	汚水ポンプ (立軸斜流渦巻ポンプ (三床式))	3 台
	$\phi 500 \times 30 \mathrm{m}^3 / \mathrm{min} \times 13 \mathrm{m} \times 100 \mathrm{kW}$	

項目	14	III → ⊃n. /#
設備	構造及び能力	現有設備
	幅8.3m×長31.1m×深3.3m 約852m (1池当たり) 幅8.3m×長20.3m×深3.3m 約556m (1池当たり) 初沈汚泥ポンプ (無閉塞型汚泥ポンプ) ϕ 100×1 m / min ×14m×7.5kW 初沈汚泥掻寄機 (フライト付ダブルチェーンコンベヤ)	4 池 2 池 2台(予備1台)
最初沈殿池	幅3.55m×機長25.5m×0.6m/min×0.75kW (2水路1駆動) 幅3.55m×機長15.25m×0.6m/min×0.4kW (2水路1駆動) 初沈スカムスキマー(空気作動回転式パイプスキマー) φ250×水路幅4.15m (2水路1駆動)	4 基 2 基 2 基
	初沈スカムスキマー(電動回転式パイプスキマー) ϕ 250×水路幅4. 15 m ×0. 2 k W(2 水路 1 駆動)	4 基
	幅8.6m×長60.1m×深5.6m 約2,894m (1池当たり) No.1-1反応タンク散気装置	6 池
	水中撹拌機(水中エアレーター) 送風量3.5N㎡/min×酸素供給量17kgO2/h×5.5kW	2 台
	全面式散気装置 酸素供給量29kg O ₂ / h No.1-2反応タンク散気装置	62 枚
	No.1-2反応タング 散 X 表 li 水中撹拌機(水中エアレーター) 送風量8.2 S m³/min×酸素供給量30kgO ₂ /h×7.5kW	2 台
	全面式散気装置 酸素供給量29kg O 2 / h	62 枚
	No.1-3反応タンク散気装置 水中撹拌機(水中エアレーター) 送風量6.25N m³/min×酸素供給量24kgO ₂ /h×5.5kW	2 台
		336 枚
反応タンク	水中撹拌機 (水中エアレーター) 送風量6.25N m²/min×酸素供給量24kgO 2/h×5.5kW	2 台
設備	全面式散気板 散気量30~50 L/min/枚 No.2-1反応タンク散気装置	336 枚
	水中撹拌機 (水中エアレーター) 送風量6.45 m³/min×酸素供給量23kgO ₂ /h×5.5kW	1 台
	水中撹拌機(水中エアレーター) 送風量8.0S m³/min×酸素供給量34kgO ₂ /h×11kW 全面式散気装置	1 台
	酸素供給量33kgO ₂ /h 酸素供給量50kgO ₂ /h	26 枚 38 枚
		1 台
	送風量6.4S m³/min×酸素供給量23kgO2/h×5.5kW 水中撹拌機(水中エアレーター) 送風量8.0S m³/min×酸素供給量34kgO2/h×11kW	1 台
	全面式散気装置 酸素供給量33kgO ₂ /h 酸素供給量50kgO ₂ /h	26 枚 38 枚

項目 設備	構造及び能力	現有設備
反応タンク	フロススプレーポンプ (渦巻ポンプ) φ100×1.6㎡/min×25m×11kW φ100×2.0㎡/min×26m×15kW φ150/φ100×3.2㎡/min×24m×22kW	1 台 1 台 1 台
送風機設備	初期用送風機 (ロータリーブロワ)	2 台 2台(予備1台) 1 台 1 台
最終沈殿池設備	幅8. 3m×長43. 7m×深3. 4m 約1, 233㎡ (1池当たり) 終沈汚泥掻寄機 (ノッチチェーン型フライト式) 幅3. 55m×機長38. 7m×0. 3m/min×0. 4kW (2水路1駆動) 終沈汚泥掻寄機 (フライト付ダブルチェーンコンベヤ) 幅3. 55m×機長38. 3m×0. 3m/min×0. 75kW (2水路1駆動) 幅3. 55m×機長38. 3m×0. 3m/min×0. 4kW (2水路1駆動) 終沈スカムスキマー (電動回転式パイプスキマー) φ250×水路幅3. 8m×0. 1kW (1水路1駆動) φ250×水路幅3. 8m×0. 2kW (2水路1駆動) φ250×水路幅4. 15m×0. 2kW (2水路1駆動) σ250×水路幅4. 15m×0. 2kW (2水路1駆動) σ250×5. 4㎡/min×4m×11kW φ200/φ250×7. 0㎡/min×4m×11kW φ250×5. 9㎡/min×4m×11kW φ250×5. 9㎡/min×4m×11kW φ250×5. 9㎡/min×15m×7. 5kW φ100×1. 1㎡/min×14m×7. 5kW	6 池 2 基 2 基 2 基 4 基基 2 接 2 分 (予 (1 台) 2 台 (予 (予 (1 台) 2 台 (予 (予 (1 台) 2 台 (予 (予 (1 台) (2 台) (2 台) (2 台) (2 台) (3 台) (4 台) (5 円 (6 円 (7 円
塩素滅菌設 備	塩素混和池 幅2.0m×長32.0m×深3.0m 約192㎡ (1池当たり) 次亜塩注入ポンプ (一軸偏心ねじマグネットカップリング式ポンプ) φ15× (0.0181~1.77) L/min×0.2MPa×0.4kW 次亜塩注入ポンプ (可変定量ダイヤフラムポンプ) φ25×1.56L/min×0.5MPa×0.2kW 砂ろ過用次亜塩注入ポンプ (可変定量ダイヤフラムポンプ) φ15× (0.0184~0.092) L/min×0.5MPa×0.2kW 次亜塩貯留タンク 容量 3.5㎡ 容量 6.0㎡	1 池 1 台 2 台 1 台 1 基 1 基

項目 設備	構造及び能力	現有設備
	砂ろ過水槽 幅5.4m×長6.0m×深 約3.7m 約120㎡ (1槽当たり)	4 槽
	砂ろ過搭(移動床式上向流砂ろ過器) 41.7㎡/h 50㎡/h	2 塔 1 塔
砂ろ過設備	原水送水ポンプ (渦巻ポンプ) φ80/φ65×1.1㎡/min×23m×7.5kW	3 台
	φ100/φ80×1.3㎡/min×20m×7.5kW 汚泥処理棟送水ポンプ (渦巻ポンプ)	2 台 2 台
	φ 200×4.8 m³/min×13m×18.5kW 高架水槽揚水ポンプ (渦巻ポンプ) φ 150/φ 125×3 m³/min×28m×30kW	2 台
	放流ポンプ (立軸斜流渦巻ポンプ)	3 台
放流 設備	φ 500×30 m³/min×6 m×45kW 川表ゲート (鋼板製スライドゲート) 幅1.6m×高1.6m×1.5kW	1 門
脱臭設備	沈砂池ポンプ棟脱臭ファン(FRPターボファン)	1 台
	φ375×66㎡/min×2.5kPa×5.5kW 沈砂池ポンプ棟活性炭吸着塔(カートリッジ式三層吸着塔) 処理風量66㎡/min	1 塔

表3-6 峡東浄化センター汚泥処理機械設備概要

項目	1# 14 T	TP → = 11. (#:
設備	構造及び能力	現有設備
	重力濃縮槽	1 槽
	φ11.0m×深 約3.0m 約280㎡(1槽当たり)	
	重力濃縮槽用汚泥掻寄機(円形中央駆動懸垂型)	1 基
	2.4m/min×0.75kW	
	初沈汚泥スクリーン(回転ドラム式スクリーン)	1 基
重力濃縮設備	処理能力 1 m³/min×0. 4kW	. ++-
	スクリーンかす脱水機(スクリュー式脱水機)	1 基
	処理量0.25 t ∕ h ×2.2kW ∕ 0.4kW スクリーンかすホッパー(電動開閉式ホッパー)	1 基
	ヘクリーン が 9 ハー (电動)	
	造縮汚泥ポンプ(吸込スクリュー付汚泥ポンプ)	2 台 (予備 1 台)
	$\phi 100 \times 1 \text{ m}^3/\text{min} \times 9 \text{ m} \times 3.7 \text{kW}$	
	余剰汚泥スクリーン(回転ドラム式スクリーン)	1 基
	処理能力 2 m³/min×0.75kW	_
	スクリーンかす脱水機(スクリュー式脱水機)	1 基
	処理量0.25 t / h ×2.2kW/0.4kW	
	スクリーンかすホッパー (油圧開閉式ホッパー)	1 基
	2 m ³ ×0. 75kW	
	遠心濃縮機給泥ポンプ(一軸ネジ式定量ポンプ)	2台(予備1台)
	φ 150× (12.5~37.5) m³/h×15m×15kW	1 4
	ベルト濃縮機給泥ポンプ(一軸ネジ式定量ポンプ) φ125× (12.5~37.5) m ² /h×20m×11kW	1 台
	〒123	
	処理能力25 m³ / h × 44. 9kW	1 台
	処理能力25㎡/h×30.75kW	1 台
	ベルト濃縮機(ベルト型ろ過濃縮機)	1 台
	処理能力25 m³/ h×5.4kW	
	余剰汚泥受槽	1 槽
機械濃縮設備	幅5.0m×長5.5m×深 約4.0m 約90㎡	
7及7人6交和日文 7用	余剰汚泥受槽撹拌機(立軸2段パドル形撹拌機)	1 基
	5. 5kW	
	濃縮汚泥受槽	0 +#:
	幅5.0m×長7.1m×深 約4.0m 約100㎡(1槽当たり) 幅5.0m×長5.8m×深 約3.5m 約100㎡	2 槽 1 槽
	横3.0m~及3.0m~保 約3.3m	3 基
	11kW	0 25
	機械濃縮汚泥移送ポンプ(一軸ネジ式定量ポンプ)	2台(予備1台)
	$\phi 150 \times 24 \mathrm{m}^3 / \mathrm{h} \times 49 \mathrm{m} \times 7.5 \mathrm{kW}$, , , , , , , , , , , , , , , , , , , ,
	定量フィーダー (容積式定量フィーダー)	2 台
	0.1~0.4L/min×0.2kW	
	薬品溶解タンク(鋼板製円筒立型)	2 基
	有効容量 1.5㎡	
	薬品溶解タンク用撹拌機(立軸2段プロペラ形)	2 台
	0.75kW 東日供公式ンプ (一軸ラジオ学県ポンプ)	0 4 (3 供 1 4)
	薬品供給ポンプ (一軸ネジ式定量ポンプ) φ20×1.5~4.5L/min×20m×0.4kW	2 台 (予備 1 台)
	Ψ Δ0 Λ 1, 0 -4, 0 L / III II Λ Δ0 III Λ U, 4KW	

項目		
設備	構造及び能力	現有設備
以 佣	 汚泥受槽	
	幅5.6m×長6.0m×深約3.0m 約100m ³	1 槽
	幅5.8m×長6.0m×深約4.8m 約160m ³	1 槽
	汚泥受槽撹拌機(立軸2段パドル形撹拌機)	2 基
	7. 5kW	2 2
	給泥ポンプ (一軸ネジ式定量ポンプ)	
	$\phi 100 \times (5 \sim 17) \text{ m}^3 / \text{h} \times 20 \text{m} \times 5.5 \text{kW}$	1 台
	$\phi 100 \times (5 \sim 15)$ m ³ /h×20m×5.5kW	2 台
	污泥脱水機 (二重円筒加圧脱水機)	1 基
	77.0kg-DS/㎡・h×ろ過面積5㎡ 動力(総合)9.2kW	1 2
	污泥脱水機 (遠心脱水機横型)	2 基
	10㎡/h 動力 (駆動用/差動用) 55kW/22kW	
	No.1 ケーキコンベヤ (水平トラフ形ベルトコンベヤ)	1 台
	幅0.6m×長17.8m 輸送量35m³/h×1.5kW	
	No.2 ケーキコンベヤ (水平トラフ形ベルトコンベヤ)	1 台
	幅0.6m×長17.8m 輸送量28 t / h×1.5kW	
	No.3 ケーキコンベヤ (傾斜トラフ形ベルトコンベヤ)	1 台
	幅0.6m×長39.6m 輸送量36m³/h×3.7kW/0.4kW	
	No.4 ケーキコンベヤ (水平トラフ形ベルトコンベヤ)	1 台
脱水設備	幅0.6m×長8.9m 輸送量35㎡/h×1.5kW	
加工小型加	No.5 ケーキコンベヤ (スクリューコンベヤ (傾斜式))	1 台
	φ350×長5.2m 輸送量3.6 t / h×2.2kW	
	No.6 ケーキコンベヤ (水平トラフ形ベルトコンベヤ)	1 台
	幅0.6m×長7.0m 輸送量30.0 t / h×0.75kW	
	No.7 ケーキコンベヤ (スクリューコンベヤ (傾斜式))	1 台
	φ315×長5.4m 輸送量4.5㎡/h×2.2kW	
	脱水ケーキホッパー(鋼板製角形カットゲート)	
	容量 8 m ³	1 基
	容量 10 m ²	1 基
	脱水機洗浄水ポンプ(片吸込渦巻ポンプ)	2台(予備1台)
	$\phi 50 \times 0.2 \text{m}^3 / \text{min} \times 45 \text{m} \times 3.7 \text{kW}$	
	定量フィーダー (容積式定量フィーダー)	2 台
	$1 \sim 4 \text{ L/min} \times 0.4 \text{kW}$	0 +++
	薬品溶解タンク(鋼板製円筒立型)	2 基
	有効容量 11㎡	0. /5
	薬品溶解タンク用撹拌機(立軸2段パドル形)	2 台
	5.5kW 英日供公式ンプ (. 軸ウンギウ具ポンプ)	
	薬品供給ポンプ (一軸ネジ式定量ポンプ) 450× (1 a 2)	1 4
	$\phi 50 \times (1 \sim 3) \text{ m}^3 / \text{h} \times 20 \text{m} \times 1.5 \text{kW}$ $\phi 50 \times (1 \sim 3) \text{ m}^3 / \text{h} \times 25 \text{m} \times 1.5 \text{kW}$	1 台
	$\phi 50 \times (1 \sim 3) \text{ m}^3 / \text{h} \times 25 \text{m} \times 1.5 \text{kW}$	2 台

項目 設備	構造及び能力	現有設備
脱臭設備	 汚泥濃縮機棟 脱臭ファン (FRP製ターボファン) 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	処理風量 90㎡/min トラックスケール (マルチロードセル方式)	1 基
その他設備	秤量30 t 幅3,000mm×長12,000mm	-

表3-7 峡東浄化センター電気設備概要

設備名称	形 式 及 び 仕 様	現有設備
受 電 設 備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 4,466kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
変電設備	モールド形乾式変圧器 動力用 3 φ 3 W×6,600 V / 420 V×500kVA " 3 φ 3 W×6,600 V / 420 V×400kVA " 3 φ 3 W×6,600 V / 420 V×300kVA " 3 φ 3 W×6,600 V / 210 V×200kVA 電灯用 1 φ 3 W×6,600 V / 210 V - 105 V×150kVA " 1 φ 3 W×6,600 V / 210 V - 105 V×50kVA	6台 1台 1台 1台 1台 1台
高圧進相コンデンサ	3 φ 3 W×6, 600 V×106kvar 3 φ 3 W×6, 600 V×79. 8kvar 3 φ 3 W×6, 600 V×53. 2kvar 3 φ 3 W×6, 600 V×26. 6kvar	1台 1台 1台 1台
交流無停電電源装置	管理本館 200Ah×54セル 制御弁式鉛蓄電池(長寿命形) 水 処 理 100Ah×54セル 制御弁式鉛蓄電池(長寿命形) 汚 泥 棟 150Ah×54セル 制御弁式鉛蓄電池(長寿命形)	1式 1式 1式
非常用発電設備	ガスタービン発電機 661kW(900PS) 3 φ 3 W×6,600 V×750kVA 588kW(800PS) 3 φ 3 W×6,600 V×625kVA 始動用直流電源装置 600Ah×12セル 制御弁式据置鉛蓄電池(長寿命形) 600Ah×12セル 制御弁式据置鉛蓄電池(長寿命形)	1台 1台 1式
中央監視設備	1式 4台 1式 1台 4台 1台 1式	
遠方監視制御設備	3 台 12台 2 台	
付 帯 設 備	構內電話設備 屋內消火栓設備 自動火災警報設備 非常放送設備 TV共聴設備 避雷設備	1式 1式 1式 1式 1式 1式

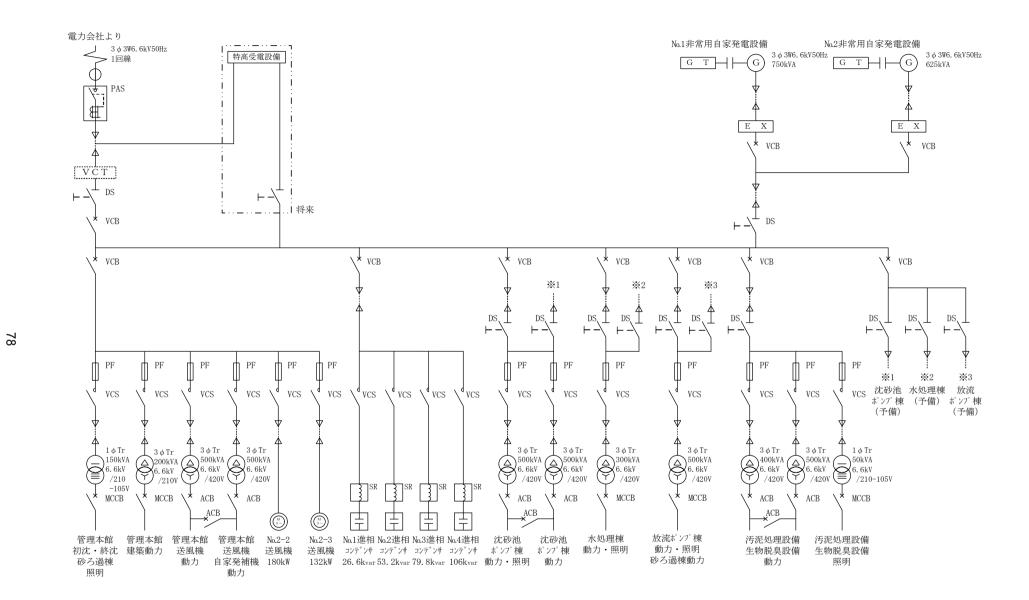
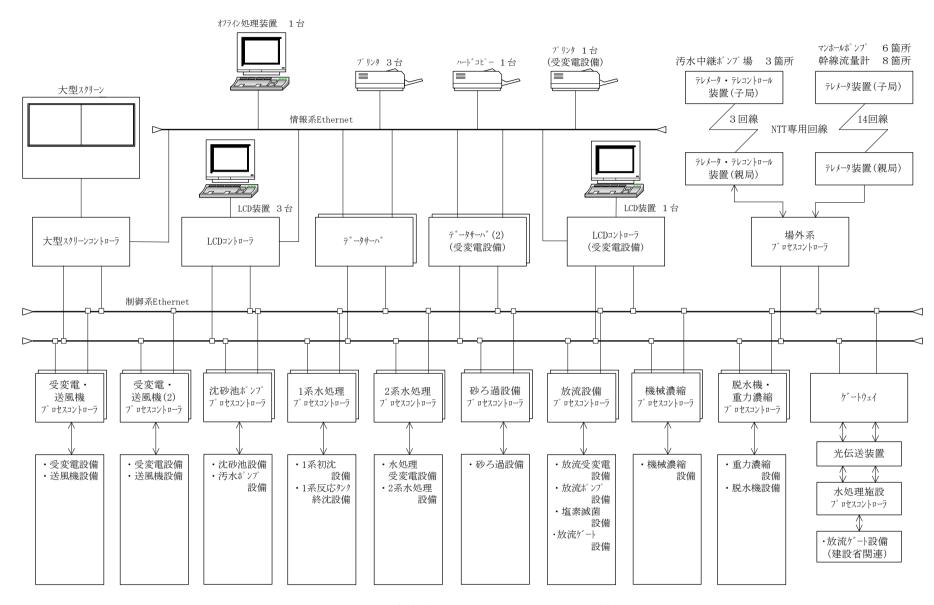



図3-4 峡東浄化センター単線結線図

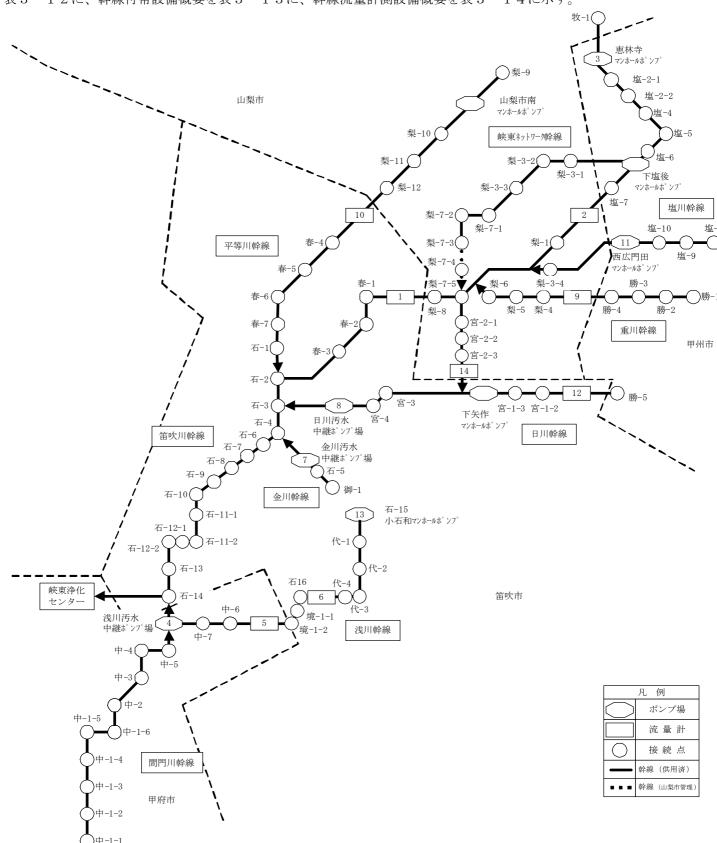

79

図3-5 峡東浄化センターシステム系統図

②中継ポンプ場・幹線及び幹線流量計

中継ポンプ場は、全体計画3箇所全てが整備されており、幹線は、全体計画延長63.7 kmの内61.8 kmが供用開始している。また、中継ポンプ場の流量計を含めた幹線流量計設置数は14箇所となっている。

流域幹線系統図を図3-6に、流域関連公共下水道接続概要を表3-8に、中継ポンプ場の建築構造物概要を表3-9に、機械設備概要を表3-10に、電気設備概要を表3-11に、単線結線図を図3-7~図3-9に、幹線概要を表3-12に、幹線付帯設備概要を表3-13に、幹線流量計測設備概要を表3-14に示す。

※峡東ネットワーク幹線の一部は山梨市から移管される予定。

図3-6 流域幹線系統図

表 3 - 8 流域関連公共下水道接続概要

		_	Ln → 1-N	Ln → 1 → 1 · · · · · · · · · · · · · · · ·	
+人 4台 4				処理区域内	
幹線名	処理分区名	供用開始年月日	面積		接続市町名
	11.		(ha)	(人)	
	塩-2-1	平成22年 3月31日	6. 16	134	
		平成22年 3月31日	9. 56	148	
	塩-4	平成 元年 7月 1日	5.87	174	甲州市
	塩-5	平成 元年 7月 1日	84. 62	2, 277	中加山
	塩-6	平成 元年 7月 1日	85. 70	3, 270	
	塩-7	平成 元年 7月 1日	136. 51	2, 791	
	梨-1	平成 8年 4月 1日	21. 34	807	
	梨-7-5	平成 元年 7月 1日	102. 18	2, 539	
	梨 -8	平成 元年 7月 1日	109. 61	2, 448	山梨市
	牧-1				
			120.66	1, 496	<i>k</i> ∕k n <i>k</i> →
	春-1	平成 5年 3月31日	19. 78	419	笛吹市
	春-2	平成20年 7月31日	22. 82	464	山梨市
		平成 5年 3月31日	18. 09	331	笛吹市
笛吹川幹線	春-3	平成 元年 4月 1日	129. 38	3, 257	
	石-2	平成23年 3月31日	5. 16	379	
	石-3	平成 4年 7月31日	17. 50	386	
	石-4	平成 3年 4月30日	43. 70	1, 478	
	石-6	平成 元年 7月 1日	70. 27	2,061	
	石-7	平成 元年 7月 1日	55. 12	1, 296	
	石-8	平成 5年11月16日	84. 70	1, 526	
	石-9	平成18年 3月31日	20. 16	0	笛吹市
	石-10	平成17年 3月31日	44. 07	510	
	石-11-1	平成17年 3月31日	8. 87	418	
	石-11-2	平成17年 3月31日	21. 17	651	
	石-12-1	平成19年 3月31日	19. 55	785	
	石-12-2	平成 4年12月29日	20. 49	979	
	石-13	平成 2年 7月31日	23. 60	592	
	石-14	平成12年 6月14日	3. 43	60	
			29. 97	857	
	石-15				
	石-16	平成31年 3月31日	1. 20	0 465	
	$1 \leftarrow 1$	平成 8年 4月 1日	147. 03	2, 465	
	代-2	平成 8年 4月 1日	80. 34	1, 901	笛吹市
浅川幹線	代-3	平成 6年 4月 1日	23. 42	590	
1287 1117035	代-4	平成 6年 4月 1日	94. 39	2,021	
	境-1-1	平成19年 3月31日	8. 02	0	
	境-1-2	平成 5年 7月 1日	210. 34	3, 359	
	中-6	平成 5年 7月 1日	20. 37	396	甲府市
	$\psi - 7$	平成 5年 7月 1日	3. 20	54	.1.111111
	梨-4	平成 7年10月 1日	26. 14	474	
	梨-5	平成 7年 4月 1日	7. 25	118	山梨市
	梨-6	平成14年 3月30日	2. 94	0	
重川幹線	勝一1	平成13年 4月 1日	41. 88	1,061	
	勝一2	平成10年 4月 1日	23. 91	358	
	勝一3	平成 5年 4月 1日	120. 15	2,859	甲州市
	勝一4	平成 5年 4月 1日	5. 80	6	
	勝-5	平成 6年 4月 1日	44. 32	1, 024	甲州市
日川幹線	房一 3 宮-1-2	平成10年 4月 1日	42. 34	794	.1.111111
ロノコ発売	ц т о		44. 09	582	笛吹市
	宫-3	平成 5年 7月 1日	82. 42	1, 430	
	宫-4	平成 5年 7月 1日	248. 19	3, 557	
金川幹線	御一1	平成 6年 4月 1日	286. 35	6, 564	笛吹市
	石-5	平成21年 3月31日	17.04	454	

幹線名	処理分区名	供用開始	台年月日		処理区域内 人 ロ (人)	接続市町名
	中-1-1	平成 8年	6月 1日			
	$\psi - 1 - 2$	平成 8年	6月 1月			
	$\psi - 1 - 3$	平成10年	7月 1日			
	$\psi - 1 - 4$	平成 9年	6月 1日		+	甲府市
	$\dot{+}$ - 1 - 5	平成 7年	4月 1日			
	$\psi - 1 - 6$	平成 7年	4月 1日	8.44		
間門川幹線	1 1 0	1 ///2	1/1 1/	36.80		笛吹市
	$\psi - 2$	平成 9年	6月 1日	12.50		甲府市
	, –			1.30	+	笛吹市
	中-3	平成 8年	4月 1日		156	
	中-4	平成 8年	4月 1日			甲府市
	中-5	平成 5年	7月 1日	30. 18		
	•			6. 20		笛吹市
	梨-9	平成16年	3月31日			
	梨-10	平成 7年1				
	梨-11	平成 7年	4月 1日		· · · · · · · · · · · · · · · · · · ·	山梨市
	梨-12	平成 7年	4月 1日			
平等川幹線	春-4	令和 3年	3月31日			
1 47/114/1/08		平成 9年	3月31日		+	
	春-5	平成 9年	3月31日		694	
	春-6	平成 8年	3月31日		505	笛吹市
	春-7	平成 6年	3月31日	49.73	1, 264	
	石-1	平成25年	3月31日	3.84	81	
	塩-8	平成 元年	7月 1日	74. 98	1, 569	
塩川幹線	塩-9	平成 元年	7月 1日	44. 53	878	甲州市
· 二二十十///	塩-10	平成 元年	7月 1日	12.41	158	
	梨-3-4	平成10年	4月 1日	11.86	274	山梨市
	梨-3-1	平成11年	8月 1日	8. 92	190	
		平成11年	8月 1日	21. 58	696	
	梨-3-3	平成11年	8月 1日	19. 22	702	
	梨-7-1	平成11年	8月 1日	40.36	1, 256	
峡東ネットワーク幹線	梨-7-2	平成 9年1		31. 59		
PF(大大・インドン / 早十形水	梨-7-3※1	平成 9年	4月 1日	32.80	970	
	梨-7-4※1	平成 9年	4月 1日	30. 28	708	
	宮-2-1	平成25年	3月31日	4. 12	85	
	宮-2-2	平成11年1	2月15日	26.70	756	
	宫-2-3	1 // 3	2月15日		1, 411	

[※]処理区域内面積及び人口は、令和7年4月1日現在の値を示す。 ※1 峡東ネットワーク幹線の一部は山梨市から移管される予定。

表3-9 中継ポンプ場建築構造物概要

項目 施設	構造及び概要
日川汚水中継ポンプ場	R C 造 地下 1 階、地上 2 階 建築面積 241㎡ 延床面積 474㎡ ポンプ室、電気室、ゲート機械室、自家発電機室、換気機械室、その他
金 川 汚 水中継ポンプ場	RC造 地下1階、地上2階
浅 川 汚 水中継ポンプ場	R C 造 地下 1 階、地上 2 階 建築面積 357 ㎡ 延床面積 775 ㎡ スクリーン・脱臭機室、ゲート室、電気室、自家発電気室、搬出室、 換気ファン室、その他

表3-10 中継ポンプ場機械設備概要

項目 施設	構造及び能力	現有設備
	流入ゲート(鋳鉄製電動角形)	2 門
	幅0.5m×高0.6m×0.75kW	
	ポンプ井連絡ゲート (鋳鉄製手動角形)	1 門
	幅0.6m×高0.6m	
	粗目スクリーン(手掻きバースクリーン)	2 基
	幅1m×高2.1m×目幅100mm	
	細目スクリーン(裏掻式自動スクリーン)	1 基
	幅1m×高2.5m×目幅20mm×0.4kW	
	し渣洗浄機(機械撹拌式)	1 基
	処理能力0.4㎡∕h×目幅10mm×2.2kW+0.75kW	
日川汚水	し渣搬出機(ベルトコンベヤ)	1 基
中継ポンプ場	幅0.6m×機長4.5m×1.5kW	
1 // 12 / 17 / //	し渣脱水機(スクリュー式)	1 基
	処理能力0.4㎡∕h×2.2kW+0.4kW	
	給水装置(圧力タンク付自動給水ユニット)	1 基
	$\phi 40 \times 0.15 \mathrm{m^3/min} \times 4.0 \mathrm{kg/cm^2} \times 3.7 \mathrm{kW} \times 2$	
	活性炭吸着塔	1 塔
	処理風量20㎡/min	
	脱臭ファン(FRP製ターボファン)	1 台
	φ200×20m³/min×1.96kPa×2.2kW	
	汚水ポンプ (吸込スクリュー付水中汚水ポンプ)	
	$\phi 200 \times 4 \text{ min} \times 20 \text{m} \times 22 \text{kW}$	1 台
	$\phi 200 \times 7 \text{ m}^3/\text{min} \times 19.5 \text{m} \times 37 \text{kW}$	1 台
	主流入ゲート(鋳鉄製電動角形)	1 門
	幅0.8m×高0.6m×0.75kW	
	流入ゲート (鋳鉄製電動角形)	2 門
	幅0.5m×高0.5m×0.4kW	
	ポンプ井連絡ゲート (鋳鉄製手動角形)	1 門
	幅0.5m×高0.5m	
	バイパススクリーン (手掻き式バースクリーン)	1 基
	幅0.8m×高2.0m×目幅20mm	
	自動除塵機(脱水機構付ドラム状スクリーン)	1 基
中継ポンプ場		
	給水装置(圧力タンク付自動給水ユニット)	1 基
	$\phi 32 \times 0.1 \text{min} \times 20 \text{m} \times 1.5 \text{kW} \times 2$	
	活性炭吸着塔	1 塔
	処理風量12㎡/min	
	脱臭ファン(FRP製ターボファン)	1 台
	φ225×12m³/min×2kPa×1.5kW	
	汚水ポンプ(吸込スクリュー式着脱装置付水中汚水ポンプ)	2 台
	φ150×2.8m³/min×20m×18.5kW	

項目 施設	構造及び能力	現有設備
	流入ゲート(鋳鉄製電動角形)	2 門
	幅0.5m×高0.5m×0.75kW	
	ポンプ井連絡ゲート (鋳鉄製手動角形)	1 門
	幅0.5m×高0.5m	
	バイパススクリーン (手掻き式バースクリーン)	1 基
	幅0.8m×高3.2m×目幅100mm	
	細目自動除塵機(間欠式前面掻き揚げ形)	1 基
	幅0.8m×高3.2m×目幅20mm×0.75kW	
	し渣洗浄機(機械撹拌式)	1 基
	処理能力0.5㎡/h×目幅6mm×2.2kW+0.75kW	
	し渣搬送機(トラフ形ベルトコンベヤ)	1 基
中継ポンプ場		
	し渣脱水機(スクリュー式)	1 基
	処理能力0.5 m³∕h×2.2kW	
	給水装置(圧力タンク付自動給水ユニット)	1 基
	$\phi 40 \times 0.165 \mathrm{m}^3/\mathrm{min} \times 0.755 \mathrm{MPa} \times 2.2 \mathrm{kW} \times 2$	
	活性炭吸着塔	1 塔
	脱臭ファン(FRP製ターボファン)	1 台
	$\phi 200 \times 24 \mathrm{m^3/min} \times 3.5 \mathrm{kPa} \times 5.5 \mathrm{kW}$	
	汚水ポンプ(吸込スクリュー式着脱装置付水中汚水ポンプ)	3 台
	φ200×5 m³/min×30m×45kW	

表3-11 中継ポンプ場電気設備概要

ポンプ場名称	設備名称	形式及び仕様	現有設備
	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 250kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V × 250kVA	1台
	低圧進相	3 φ 3 W×440 V×20kvar	1台
	コンデンサ	3 φ 3 W×440 V×10kvar	1台
日川汚水	交流無停電	₹=UPS 2kVA	1台
中継ポンプ場	電源設備		
	非常用	ディーゼル発電機 180kW(245PS) 3 φ 3 W×420 V×200kVA	1台
	発電設備	始動用直流電源装置 200Ah×12セル 陰極吸収式シール形鉛蓄電池	1式
	遠方監視	テレメータ・テレコントロール装置 (子局)	1台
	制御設備	帯域品目3.4kHz×4線式 保守用電話切替式	
		インターホン設備	1式
	付帯設備	防犯設備	1式
	受電設備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 150kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6,600 V / 210 V × 150 kVA	1台
	低圧進相	3 φ 3W×210V×20kvar	1台
A 111 \>= 1	コンデンサ	3 ∮ 3 W×210 V×10kvar	1台
金 川 汚 水中継ポンプ場	交流無停電電源 設備	₹=UPS 3kVA	1台
	非常用	ディーゼル発電機 125kW(170PS) 3 φ 3 W×210 V×125kVA	1台
	発電設備	始動用直流電源装置 150Ah×12セル 制御弁式鉛蓄電池	1式
	遠方監視 制御設備	テレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
		インターホン設備	1式
	付帯設備	防犯設備	1式

ポンプ場名称	設備名称	形 式 及 び 仕 様	現有設備
	受電設備	受電方式 3 ¢ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 400kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 16kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6,600 V / 420 V × 400kVA	1台
	任工准扣	3 φ 3 W×420 V×15kvar	1台
	低 圧 進 相 コンデンサ	3 φ 3 W×420 V×10kvar	1台
浅川汚水		$3 \phi 3W \times 420V \times 5$ kvar	1台
中継ポンプ場	交流無停電電源 設備	50Ah×54セル 制御弁式鉛蓄電池	1台
	非常用	ガスタービン発電機 353kW(480PS) 3 φ 3 W×420 V×300kVA	1台
	発電設備	始動用直流電源装置 400Ah×12セル 制御弁式鉛蓄電池(長寿命形)	1式
	遠方監視制御設備	テレメータ・テレコントロール装置(子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
		自動火災警報設備	1式
	付帯設備	インターホン設備	1式
		防犯設備	1式

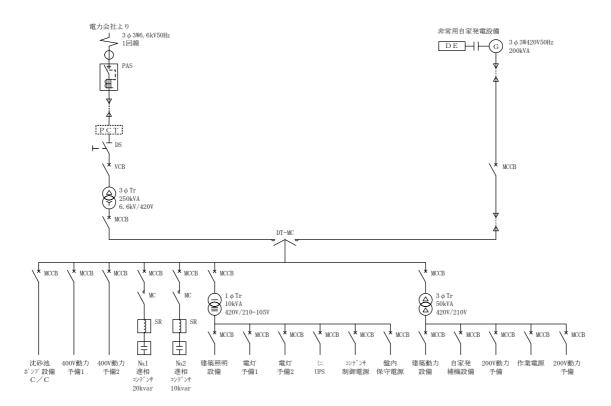


図3-7 日川汚水中継ポンプ場単線結線図

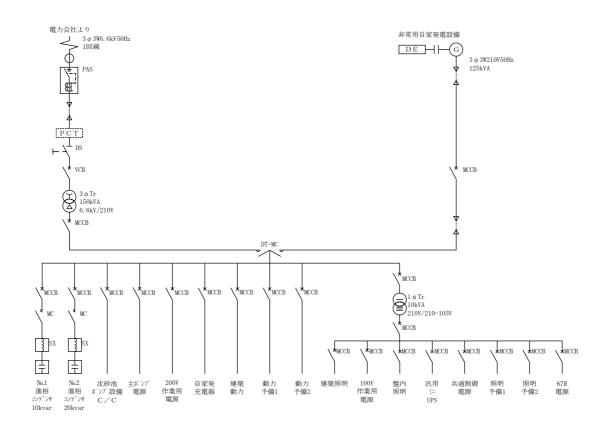


図3-8 金川汚水中継ポンプ場単線結線図

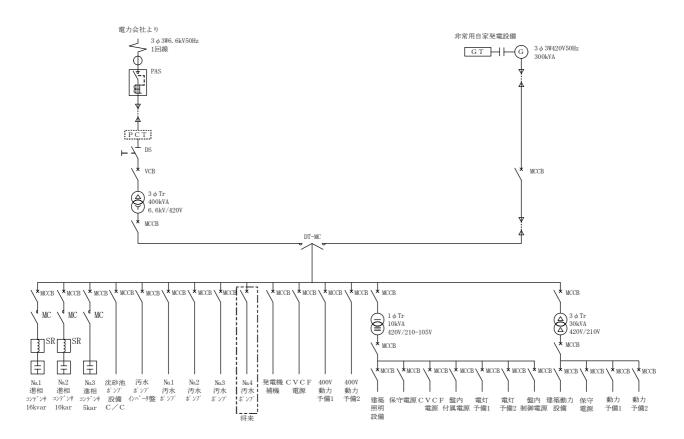


図3-9 浅川汚水中継ポンプ場単線結線図

表3-12 幹線概要

幹線名	供	用
群	管径 (mm)	延長 (m)
笛吹川幹線	200 ~ 1,800	21, 661
浅 川 幹 線	150 ~ 800	6, 832
重 川 幹 線	350 ~ 600	3, 004
日 川 幹 線	200 ~ 1,650	7, 548
金 川 幹 線	250 ~ 800	1,716
間門川幹線	300 ~ 1,000	4, 733
平等川幹線	200 ~ 1,000	6, 356
塩川幹線	200 ~ 600	3, 419
峡 東ネットワーク幹 線	250 ~ 500	6, 551
合 計		61, 820

[※]供用管径及び延長は、令和7年4月1日現在の値を示す。

[※]供用延長は、県への管理移管を計画している公共管を含まない。

表 3 - 1 3 幹線付帯設備概要

	幹線	名		設 備 名 称	仕様及び形式	現有設備
				恵林寺マンホールポンプ	水中汚水ポンプ φ100×1.2㎡/min×10m×5.5kW	2台
<i></i>	n la	Λ ± 1	線	鍛治屋橋水管橋	笛吹川横断部 管径 350mm	72. 569m
笛	吹川	軒	形	緊急時切替ゲート	幅1.1m×高さ1.1m	1門
				桑戸橋制水ゲート設備	右岸 幅1.4m×高さ1.3m 左岸 幅1.4m×高さ1.3m	1門 1門
				 白井河原橋水管橋	笛吹川横断部 管径 350mm×2条	279. 858m
				御成橋水管橋	渋川横断部 管径 350mm×2条	23. 565 m
				稲子田橋水管橋	藤沢川横断部 管径 200mm	4. 40 m
浅	Ш	幹	線	舟形橋水管橋	天川横断部 管径 150mm	65. 16 m
					水中汚水ポンプ	2台
				小石和マンホールポンプ	$\phi 150 \times 3.2 \mathrm{m}^3 / \mathrm{min} \times 22 \mathrm{m} \times 22 \mathrm{kW}$	2 1
重	JII	幹	線	鴨居寺橋伏越	重川横断部 管径 600mm	125. 111 m
				笛吹橋水管橋	笛吹川横断部 管径 350mm×2条	178. 650m
				下田川水管橋	下田川横断部 管経 350mm×2条	10.367 m
日	Ш	幹	線		水中汚水ポンプ	2台
				下矢作マンホールポンプ	$\phi 150 \times 3.72 \mathrm{m}^3/\mathrm{min} \times 16 \mathrm{m} \times 22 \mathrm{kW}$	
		.1.4	Lafe	鵜飼橋水管橋	笛吹川横断部 管径 250mm×2条	237. 000m
金	Ш	幹	線	長塚橋水管橋	下平井川横断部 管径 250mm×2条	7. 900m
	<i>k</i> -∕k- 11	1 +4	√1 1-1	山梨市南	水中汚水ポンプ	2台
平	等川	幹	線	マンホールポンプ	$\phi 150 \times 2.280 \mathrm{m}^3/\mathrm{min} \times 14 \mathrm{m} \times 11 \mathrm{kW}$	
+/=	ЛП	本人	線	西広門田	水中汚水ポンプ	2台
塩)11	幹	形	マンホールポンプ	$\phi 150 \times 1.885 \mathrm{m^3/min} \times 15 \mathrm{m} \times 11 \mathrm{kW}$	
				下塩後マンホールポンプ	水中汚水ポンプ	2台
				「塩板マンがールかンク	$\phi 100 \times 2.0 \mathrm{m}^3 / \mathrm{min} \times 11.5 \mathrm{m} \times 7.5 \mathrm{kW}$	
				重川橋水管橋	重川横断部 管径 400mm×1条	158.380m
峡	東 ネット	ワーク草	全線	分水ゲート	管径 300mm	1門
)4/4·/	管径 350mm	1門
				 日川橋伏越	日川横断部 管径 350mm	158. 498m
				ルート切替ゲート	管径 500mm 幅0.8m×高さ1.3m	1 88
Щ					悔U. 0III < 向 C I. 3 III	1 門

表 3 - 1 4 幹線流量計測設備概要

流 量 計 番 号	設備名称	管径 (mm)	流量計口径 (mm)	最大目盛 (㎡/h)	形式
1	山梨市1流量計	900	900	1,000	超音波式
2	塩山1流量計	700	594	400	超音波式
3	牧丘町流量計 (恵林寺マンホールポンプ)	_	150	200	電磁式
4	中道町流量計 (浅川汚水中継ポンプ場)	1	350	1,000	電磁式
5	境川村流量計	700	700	250	超音波式
6	八代町流量計	600	600	250	超音波式
7	御坂町流量計 (金川汚水中継ポンプ場)		250	500	電磁式
8	一宮町流量計 (日川汚水中継ポンプ場)	1	350	1, 400	電磁式
9	勝沼1流量計	400	400	200	超音波式
1 0	山梨市2流量計	350	350	250	PBF、圧力式
1 1	塩山 2 流量計 (西広門田マンホールポンプ)		200	300	電磁式
1 2	勝沼 2 流量計	300	300	90	PBF、圧力式
1 3	石和町流量計 (小石和マンホールポンプ)	_	150	480	電磁式
1 4	山梨市 3 流量計	500	500	800	面速式
備考	流量計番号は図3-6流域幹線系統	図中の設備番	等号を示す。		

2 施設運転管理状況

(1) 機械設備運転管理状況

①各設備の運転状況等

主要機器の運転状況を表3-15に、し渣及び沈砂搬出状況を表3-16に、薬品・給水・燃料使用状況を表3-17に示す。また、中継ポンプ場運転状況を表3-18に示す。

各設備については、下記のとおり運転を行った。

ア) 沈砂池ポンプ設備

沈砂池、スクリーンについてはNo.2水路を使用し、除塵設備は1日5回の運転を行った。除砂設備は通常運転せず、1週間~1箇月毎の定期点検運転のみとした。

汚水ポンプについては流入水量にあわせて揚水量を設定し、一定流量にて運転を行った。揚水量は汚水ポンプ 1 台運転で 2,000 ㎡/h を通常時の上限とし、No. 2, 3 汚水ポンプはインバータの故障により 7 月 25 日から可変速運転が不可能となったため、No. 1 汚水ポンプを主機として運転を行った。

イ) 最初沈殿池設備

使用池数は5月20日まで3池とし、5月20日以降は2池とした。

汚泥掻寄機は連続運転とし、初沈汚泥ポンプは1時間に1回の定期的な汚泥引き抜き運転を行った。また、スカムスキマーは1日2回の定期運転を行った。 $No.1-3\sim No.2-2$ 最初沈殿池のスカムスキマーは故障のため、当該池を使用する際は1週間毎に人力でスカムをスカムスキマーに流し込む対応を行った。

ウ) 反応タンク設備

使用池数は5池とした。

使用各池に設置されている水中撹拌機は連続運転とした。

反応タンクは曝気倍率(DO補正)制御とし、送風機は1台で吐出圧一定制御による運転を行った。なお、No.1-1送風機は振動計の不良のため、予備機とした。

工) 最終沈殿池設備

使用池数は7月8日まで6池とし、7月8日以降は5池使用とした。

汚泥掻寄機は連続運転とし、返送汚泥ポンプは返送率一定制御による連続運転とした。余剰汚泥ポンプはMLSSの状況をみながらタイマーによる自動引き抜き運転を行った。また、スカムスキマーは1時間毎の定期運転を行った。

才) 塩素滅菌設備

次亜塩注入ポンプは注入率一定制御により1台連続運転を行った。

カ)放流ポンプ設備

放流河川水位が上昇したときの非常設備であり、通常はバイパスさせて自然流下による放流を行った。

キ)機械汚泥濃縮設備

No.3ベルト濃縮機を主機とし、No.2遠心濃縮機と組み合わせて1~2台で運転を行った。また、No.2遠心濃縮機を使用しない期間は隔週1回の低速洗浄による管理運転を行った。

投入汚泥は余剰汚泥のみとし、給泥量一定制御で余剰汚泥引き抜き量に合わせて運転を行った。

No.1遠心濃縮機はNo.1濃縮汚泥受槽撹拌機の故障により隔週1回の低速洗浄による管理運転を

行った。

ク) 重力汚泥濃縮設備

最初沈殿池より送泥された生汚泥を希釈濃縮法により重力濃縮を行った。

ケ) 汚泥脱水設備

脱水機は3台のうちNo.1汚泥脱水機を主機とし、No.3遠心脱水機は月2回程度の実負荷による管理運転と隔週1回の低速洗浄による管理運転を行った。No.4遠心脱水機は9月6日に差速機インバータの故障が復旧して以降は月2回程度の実負荷による管理運転と隔週1回の低速洗浄による管理運転を行った。

なお、No.3遠心脱水機は4月30日から5月10日まで差速装置の故障により使用不可能な状態となった。また、No.1 汚泥脱水機は12月24日からNo.1 薬品供給ポンプのコンバータの故障により使用不可能な状態となったが、1月10日にNo.4 薬品供給ポンプのコンバータと入れ替えを行い、No.4遠心脱水機が使用不可能な状態となる代わりに主機であるNo.1 汚泥脱水機を使用可能な状態とした。

コ) 脱臭設備

沈砂池ポンプ棟、汚泥棟、汚泥濃縮機棟、生物脱臭棟及び汚泥処理生物脱臭棟のいずれも 24 時間連続運転とした。

サ)関連中継ポンプ場

日川汚水中継ポンプ場はNo.1 汚水ポンプを主機とし、ポンプ井水位による間欠運転を行った。 浅川及び金川汚水中継ポンプ場は汚水ポンプの可変速運転によるポンプ井水位一定制御の運転 を行った。

各マンホールポンプはポンプ井水位による間欠運転を行った。

シ) 伏越設備

鴨居寺橋伏越設備は1箇月に1回のフラッシング及び1年に1回の清掃を行った。 日川橋伏越設備は1年に1回の清掃を行った。

②未使用機器の保守

未使用機器は定期点検時に保守運転を実施した。また、予備機のある機器については1週間から 1箇月毎の周期で切替運転とした。

③機器故障状況

本年度の主な機器故障状況を表3-19に示す。

														(単位	: 時間)
	項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
No. 1	汚水ポン		341.6	164. 5	326. 1	329. 5	715. 4	662.0	739. 4	714. 9	740. 9	740. 7	665. 5	743. 1	6, 883. 6
No. 2	汚水ポン		203. 4	305. 0	180. 7	220. 8	0.6	0.8	1.8	0. 2	0. 2	0.4	0. 4	0.1	914. 4
No. 3 No. 1	初沈汚泥		179. 5 282. 4	273. 8 531. 1	228. 5 565. 0	184. 2 571. 7	42. 1 599. 8	55. 1 592. 6	0. 4 625. 0	4. 4 602. 0	0. 2 613. 3	0. 8 623. 2	2. 2 557. 9	0. 2 617. 4	971. 4 6, 781. 4
No. 2	初沈汚泥		0. 1	3. 6	0. 1	0. 1	0. 3	0. 1	0.1	0.1	0.1	0. 1	0. 1	0.1	4. 9
No. 1	初期用送		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0	0.0	0. 0	0.0
No. 2	初期用送	風機	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	送風機		0.6	1.1	4. 1	0.3	0.4	0.4	0.8	0.3	0.2	0.4	0.2	0.3	9. 1
	送風機		701. 1	742. 1	715. 6	111. 9	414.8	713. 3	742. 0	719. 4	739. 0	742. 3	668. 2	743. 4	7, 753. 1
	送風機		0. 0 18. 3	0.0	0. 0	0. 0 622. 4	0.0	0.0	0.0	0.0	0. 4 2. 6	0.0	0. 0 1. 0	0.0	974. 1
	返送汚泥	ポンプ	508. 2	743. 7	409. 2	727. 7	326. 8 532. 7	699.6	696. 8	718. 1	668. 9	702. 7	541. 5	724. 1	7, 673. 2
	返送汚泥		716. 2	478. 5	701. 1	393. 1	736. 8	313. 8	736. 5	661. 9	732. 4	613. 1	648. 3	627. 0	7, 358. 7
No. 1-3	返送汚泥	ポンプ	208. 0	259. 7	342. 8	339. 9	202. 1	438.0	48. 1	0.0	0.0	0.0	6. 7	10. 1	1, 855. 4
No. 2-1	返送汚泥	ポンプ	15. 6	733. 6	66. 1	725. 1	63.8	684. 9	21.6	709.7	49. 9	611. 5	74. 0	685.6	4, 441. 4
	返送汚泥		706.0	10.3	661. 4	44. 2	731.8	95. 1	732. 2	60.9	706. 3	141.0	611. 1	62. 9	4, 563. 2
	余剰汚泥		5. 5	230. 3	16.8	230. 8	4.4	211. 5	4. 4	205. 8	9. 4	157. 2	15. 1	230. 4	1, 321. 6
	余剰汚泥		259. 7	4.7	215. 5	4.6	234. 1	9. 9	220. 6	3.0	217. 4	32. 0	172. 6	19. 3	1, 393. 4
	余剰汚泥		2. 0 124. 5	110. 7 2. 1	7. 7 106. 5	111. 3 2. 3	1. 9 115. 3	101. 1 4. 4	1. 9	105. 5 1. 3	4. 9 104. 5	80. 4 15. 0	7. 3 82. 8	120. 4 8. 4	655. 1 668. 0
No. 1	次亜塩注		717. 7	741. 7	719. 1	731. 7	740. 0	713. 1	741. 4	718. 6	741. 7	742. 1	669. 3	744. 0	8, 720. 4
	次亜塩注		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	次亜塩注	入ポンプ	0.1	0.2	0. 1	2.0	0.1	1.0	1.5	0.2	0.1	0.1	0. 1	0.0	5. 5
No. 1	放流ポン		0. 2	0.2	0. 2	0. 2	0. 2	0. 2	0. 2	0.2	0. 2	0. 2	0. 2	0. 2	2. 4
No. 2	放流ポン		0. 2	0. 2	0. 2	0. 2	0. 2	0. 2	0. 2	0.2	0. 2	0. 2	0. 2	0. 2	2. 4
No. 3 No. 1	放流ポン遠心濃縮		0. 2	0. 2	0. 2	0. 2	0. 2	0. 2	0. 2	0.2	0. 2	0. 2 9. 8	0. 2 94. 2	0. 2 32. 0	2. 4 136. 0
No. 1	遠心濃縮		360. 9	111. 0	121. 0	168. 4	155. 6	153. 4	106. 2	96.6	155. 2	50. 5	0. 0	245. 3	1, 724. 1
No. 3	ベルト濃		590. 3	722. 3	688. 1	717. 1	717. 1	688. 6	691. 5	695. 2	691. 9	692. 6	660. 8	728. 5	8, 284. 0
No. 1	汚泥脱水	機	495. 3	559. 3	527. 7	536. 0	511. 5	484. 8	496. 9	372. 2	190. 9	311.0	348. 0	506.0	5, 339. 6
No. 3	遠心脱水		75. 3	9.4	11.6	22. 5	42.8	12. 2	17. 5	93. 9	303.0	195. 1	142.0	10.8	936. 1
No. 4	遠心脱水		0.0	0.0	0.0	0.0	0.0	7.4	0.0	23. 3	60. 2	20. 5	0.0	0.0	111. 4
No. 1	非常用発		0. 2	0. 2	0. 2	1. 2	0. 2	0. 2	0. 2	0. 2	0.5	1.0	0. 2	0. 2	4. 5
No. 1 No. 2	非常用発		0. 2	0. 2	0. 2	1. 2	0. 2 2. 8	0. 2	0. 2	0. 2	0. 5	1. 0	0. 2	0. 2	7. 0
					0. 2	1. 1	2.8	0.2	0. 2	0. 2					
						1.1	2.8	0.2		0. 2					7. 0
No. 2	非常用発	電機	0.2	0. 2	表3-	1. 1	2.8	0.2	0.2	0.2	0.5	1. 0	0. 2	0. 2	
No. 2 し渣搬	非常用発項	電機 目 理系) (kg)	0.2	0.2	0.2 表3- 6月	1.1 · 1 6 · 7月	2.8 し査及 8月	0.2 び沈砂 9月	0.2 搬出状 10月	0.2 沈 11月	0.5	1.0	0.2	0.2	7.0
No. 2 し渣搬	非常用発 項 出量(水処 出量(汚泥	電機 目 理系) (kg)	0.2	0.2 5月 98	0.2 表3- 6月 111	1.1 16 7月 101	2.8 し渣及 8月 93	0.2 び沈砂 9月 169	0.2 搬出状 10月 159	0.2 沈 11月 91	0.5 12月 143	1.0 1月 122	0.2 2月 127	0.2 3月 42	7.0 合計 1,373
No. 2 し渣搬 し渣搬	非常用発 項 出量(水処 出量(汚泥	電機 目 理系) (kg) 処理系) (kg)	0.2 4月 117 1,372	0.2 5月 98 1,668	表 3 — 6月 111 1,903 0	1.1 16 7月 101 1,690 0	2.8 し渣及 8月 93 1,460 0	0.2 び沈砂 9月 169 1,841 0	0.2 搬出状 10月 159 1,941 0	0.2 況 1 1月 91 2,325 0	0.5 1 2月 143 2,580 0	1.0 1月 122 2,640	0.2 2月 127 2,084	0.2 3月 42 2,258	7.0 合計 1,373 23,762
No. 2 し渣搬 し渣搬	非常用発 項 出量(水処 出量(汚泥 出量	電機 目 理系) (kg) 処理系) (kg)	0.2 4月 117 1,372 0	0.2 5月 98 1,668 0	表3- 6月 111 1,903 0	1.1 16 7月 101 1,690 0	2.8 し渣及 8月 93 1,460 0	0.2 び沈砂 9月 169 1,841 0	0.2 搬出状 1 0月 159 1,941 0 燃料使	0.2 : 況 11月 91 2,325 0	0.5 12月 143 2,580 0	1.0 1月 122 2,640 0	0.2 2月 127 2,084 0	0.2 3月 42 2,258 0	7.0 合計 1,373 23,762 0
No. 2 し渣搬 し渣搬	非常用発項 出量(水処出量(汚泥出量	電機 目 理系) (kg) 処理系) (kg) (kg)	0.2 4月 117 1,372 0	0.2 5月 98 1,668 0	表 3 — 6月 111 1,903 0 表 3 — 6月	1.1 16 7月 101 1,690 0	2.8 し渣及 8月 93 1,460 0 薬品・ 8月	0.2 び沈砂 9月 169 1,841 0 給水・	0.2 搬出状 1 0月 159 1,941 0 燃料使 1 0月	0.2 : 況 11月 91 2,325 0	0.5 1 2 月 143 2,580 0	1.0 1月 122 2,640 0	0.2 2月 127 2,084 0	0.2 3月 42 2,258 0	7.0 合計 1,373 23,762 0
No. 2 し渣搬 し渣搬	非常用発 項 出量(水処 出量(汚泥 出量	電機 日 理系) (kg) (处理系) (kg) (kg)	0.2 4月 117 1,372 0	0.2 5月 98 1,668 0 5月	表 3 — 6月 111 1,903 0 表 3 — 6月 0	1.1 1.6 7月 101 1,690 0 1.7 7月 4	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0	0.2 び沈砂 9月 169 1,841 0 給水・ 9月	0.2 搬出状 1 0月 159 1,941 0 燃料使 1 0月	0.2 11月 91 2,325 0 11月 11月	0.5 1 2 月 143 2,580 0	1.0 1月 122 2,640 0	0.2 2月 127 2,084 0 2月 0	0.2 3月 42 2,258 0	7.0 合計 1,373 23,762 0 合計
No. 2 し渣搬 し渣搬	非常用発 項 出量(水処 出量(汚泥 出量	電機 日 理系) (kg) (处理系) (kg) (kg) (kg) 日 剤 (kg) 酸ナトリウム (L)	0.2 4月 117 1,372 0 4月 0 16,546	5月 98 1,668 0 5月 0 17,349	表3- 6月 111 1,903 0 表3- 6月 0 17,665	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253	0.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593	0.2 → 搬出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129	0.2 次 1 1月 91 2,325 0 5 5 1 1月 1 16,134	1 2月 143 2,580 0 1 2月 0 15,751	1.0 1月 122 2,640 0 1月 0 14,711	0.2 2月 127 2,084 0 2月 0 13,099	3月 42 2,258 0 3月 0 14,122	7.0 合計 1,373 23,762 0 合計 12 196,342
No. 2 し渣搬 し渣搬	非常用発 項 出量(水処 出量(汚泥 出量 (汚泥 出量	電機 日 理系) (kg) (处理系) (kg) (kg)	0.2 4月 117 1,372 0	5月 98 1,668 0 5月 0 17,349 163.3	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9	1.1 1.6 7月 101 1,690 0 1.7 7月 4	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0	0.2 び沈砂 9月 169 1,841 0 給水・ 9月	0.2 搬出状 1 0月 159 1,941 0 燃料使 1 0月	0.2	1 2月 143 2,580 0 15,751 223.1	1.0 1月 122 2,640 0 1月 0 14,711 248.4	0.2 2月 127 2,084 0 2月 0	3月 42 2,258 0 3月 0 14,122 227.7	7.0 合計 1,373 23,762 0 合計
No. 2 し渣搬 し渣搬 沈砂搬	非常用発 項 出量(水処 出量(汚泥 出量 次死 高分子凝 高分子凝	電機 日 理系) (kg) 処理系) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg)	0.2 4月 117 1,372 0 4月 0 16,546 140.3	5月 98 1,668 0 5月 0 17,349 163.3	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0	0.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7	0.2 ₩出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3	0.2	1 2月 143 2,580 0 15,751 223.1	1.0 1月 122 2,640 0 1月 0 14,711 248.4	2月 127 2,084 0 2月 0 13,099 243.8	3月 42 2,258 0 3月 0 14,122 227.7	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7
No. 2 し渣搬 し渣搬 沈砂搬	非常用発 項处 出量(水) (汚) 出量 以 形 工 金 分 分 分 身 身 角 須 消 臭 角 利 消 消 身 角 名 り ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371	0.2 ₩出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0	0.2 次 1 1月 91 2,325 0 5 5 1 1月 16,134 225,4 1,710.0	1 2月 143 2,580 0 15,751 223.1 2,205.0	1.0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0
No. 2 し渣搬 し渣搬 沈砂搬	非常用発 項人 人 大 所 工 量 (大 形 工 量 、 大 不 、 不 、 不 、 不 、 高 高 高 高 為 分 角 身 角 2 名 名 ろ ろ ろ ろ ろ ろ ろ ろ う ろ り え り え り え り え り え り え り れ う れ う れ う れ う れ う れ う れ う れ う れ う に う ろ う れ う に う 、 う れ う に う う に う ろ う う う う う う う う う う う う う	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0	0.2 ₩出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0	0.2	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846
No. 2 し渣搬 し渣搬 沈砂搬	非常用発 項水原 (水泥泥 工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129	0.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0	0.2 ₩出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182	0.2 1 1月 91 2,325 0 E用状況 1 1月 16,134 225.4 1,710.0 850 1,084 0 115	1 2月 143 2,580 0 1 2月 0 15,751 223.1 2,205.0 850 722 0 113	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0 106	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0 104	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0
No. 2 し渣搬 し渣搬 沈砂搬 薬品	非常用発 項処(水泥) 国量量量 出出出出 国次高高消臭鬼 消臭鬼水 過水 の の の の の の の の り の り ろ ろ う り 利 り り り り り り り り り り り り り り り り り	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0 139 35,493	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0 99	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751	0.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412	0.2 数出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660	0.2 1 1月 91 2,325 0 E用状形 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440	1 2月 143 2,580 0 1 2月 1 2月 0 15,751 223.1 2,205.0 850 722 0 113 44,375	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0 104 38,951	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0 1,445 453,910
No. 2 し渣搬 し渣搬 沈砂搬	非常用発 項水原 (水泥泥 工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129	0.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0	0.2 ₩出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182	0.2 1 1月 91 2,325 0 E用状況 1 1月 16,134 225.4 1,710.0 850 1,084 0 115	1 2月 143 2,580 0 1 2月 0 15,751 223.1 2,205.0 850 722 0 113	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0 106	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0 104	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0
No. 2 し渣搬 し渣搬 沈砂搬 薬品	非常用発 項処(水泥) 国量量量 出出出出 国次高高消臭鬼 消臭鬼水 過水 の の の の の の の の り の り ろ ろ う り 利 り り り り り り り り り り り り り り り り り	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0 139 35,493	表3-6月 111 1,903 0 表3-6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52	1.1 1.6 7月 101 1,690 0 177 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51	0.2 操出状 10月 159 1,941 0 燃料使 10月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50	1 1月 91 2,325 0 5用状况 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81	1 2月 143 2,580 0 1 2月 1 2月 0 15,751 223.1 2,205.0 850 722 0 113 44,375	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0 104 38,951	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0 1,445 453,910 8,161
No. 2 し渣搬 し渣搬 沈砂搬 薬品	非常用発 項処(水泥) 国量量量 出出出出 国次高高消臭鬼 消臭鬼水 過水 の の の の の の の の り の り ろ ろ う り 利 り り り り り り り り り り り り り り り り り	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370 81	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51	0.2 ※搬出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50	1 1月 91 2,325 0 5用状况 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205	合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0 1,445 453,910 8,161
No. 2 し査搬 沈砂搬 薬品 給水 燃料	非常用発 (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚泥) (水汚水) (水方)	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0 139 35,493	表3-6月 111 1,903 0 表3-6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52	1.1 1.6 7月 101 1,690 0 177 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402	2.8 し渣及 8月 93 1,460 0 薬品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51	0.2 操出状 10月 159 1,941 0 燃料使 10月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50	1 1月 91 2,325 0 5用状况 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81	1 2月 143 2,580 0 1 2月 1 2月 0 15,751 223.1 2,205.0 850 722 0 113 44,375	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190	2月 127 2,084 0 2月 0 13,099 243.8 1,755.0 640 475 0 104 38,951	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205	7.0 合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0 1,445 453,910 8,161
No. 2 し査搬 上査搬 業品 給水 燃料	非常用発 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370 81	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50	表3-6月 111 1,903 0 表3-6月 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3-6月	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402	2.8 し渣及 8月 93 1,460 0 ※品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51	0.2 ※搬出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50	1 1月 91 2,325 0 5用状况 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205	合計 1,373 23,762 0 合計 12 196,342 2,527.7 23,235.0 9,760 11,846 0 1,445 453,910 8,161 : 時間)
No. 2 し査搬 沈砂搬 薬品 給水 燃料	非常用発 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	電機 日	0.2 4月 117 1,372 0 4月 0 16,546 140.3 2,220.0 870 936 0 98 47,370 81	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3- 6月 6月 6月 6月 6月 6月 6月 6月 6月 6月 6月 6月 6月	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402 1.8 7月 258.8	2.8 し渣及 8月 93 1,460 0 ※品・ 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51 ンプ場 9月 253.4	0.2 ※搬出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50	1 1月 91 2,325 0 5用状况 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 248.2	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487	1.0 1月 122 2,640 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205 (単位 3月 233.5	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527. 7 23, 235. 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944. 0 7. 3
No. 2 し査搬搬 薬品 給水 燃料 ポン 日ポンプ	非常用発 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	電機 日	0.2 4月 117 1,372 0 16,546 140.3 2,220.0 870 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50 5月 246.2 0.9 1.0 221.5	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3- 6月 250.1 0.4 0.1 244.1	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402 1 8 7月 258.8 0.5 0.1 191.3	2.8 し渣及 8月 93 1,460 0 ※品・ 8月 0 18,253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月 0.4 0.8 258.9	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51 シプ場 9月 253.4 1.4 0.1 305.5	0.2 対象出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50 1 0月 264.3 0.5 0.1 231.2	0.2 1 1月 91 2,325 0 E用状形 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 248.2 0.7 1.1 248.2	1 2月 143 2,580 0 1 1 2月 1 2月 23.1 2,205.0 850 722 0 113 44,375 1,487	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1月 239.4 0.7 0.2 280.0	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527. 7 23, 235. 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944. 0 7. 3 3. 9 2, 946. 6
No. 2 し査搬 上査搬 業品 給水 燃料	非常用発 項処水汚泥 出出出出 固次高高消消消上砂重 地乗分分臭臭臭水ろ油 が乗子子剤剤剤 水場 水場 水場 水場 水場 水場 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子科剤剤 大子子科剤剤 大子子子剤剤剤 大子子子剤剤 大子子子科	電機 日	0.2 4月 117 1,372 0 16,546 140.3 2,220.0 870 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5 227.9	5月 98 1,668 0 5月 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50 5月 246.2 0.9 1.0 221.5	表3- 6月 111 1,903 0 表3- 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3- 6月 250.1 0.4 0.1 244.1 292.3	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 50,010.0 850 1,423 0 138 28,054 402 1 8 7月 258.8 0.5 0.1 191.3 384.8	2.8 し渣及 8月 93 1,460 0 ※品・ 8月 0 18,253 253.0 1,980.0 1,541 0 129 34,751 706 中継ポ 8月 0 1,253 0 1,980.0 1,980.0 1,00	の.2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51 シプ場 9月 253.4 0.1 305.5 213.9	0.2 対象出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 1865.0 1,302 0 182 37,660 50 1 0月 264.3 0.5 0.1 231.2 327.8	1 1月 2,325 0 1 1月 1 2,325 0 1 1月 1 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 248.2 0.7 1.1 248.2 289.7	1 2月 143 2,580 0 1 1 2月 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1月 239.4 0.7 0.2 280.0 258.4	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3 290.1	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3 264.9	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527. 7 23, 235. 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944. 0 7. 3 3. 9 2, 946. 6 3, 510. 4
No. 2 し査搬搬 上される 上でで 上でで 上でで 上でで 上でで 上でで 上でで 上でで 上でで たった。 とった。 とった。 とった。 とった。 とった。 とった。 とった。	非常用発 項処水汚泥 出出出出 固次高高消消消上砂重 地乗分分臭臭臭水ろ油 が乗子子剤剤剤 水場 水場 水場 水場 水場 水場 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子剤剤剤 水 大子子科剤剤 大子子科剤剤 大子子子剤剤剤 大子子子剤剤 大子子子科	電機 日	0.2 4月 117 1,372 0 16,546 140.3 2,220.0 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5 227.9 0.1	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50 5月 246.2 0.9 1.0 221.5	表3—6月 111 1,903 0 表3—6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3— 6月 250.1 0.4 0.1 244.1 292.3 0.1	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 850 1,423 0 138 28,054 402 1.8 7月 258.8 0.5 0.1 191.3 384.8 0.1	2.8 し渣及 8月 93 1,460 0 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月 256.9 0.4 0.8 278.4 278.8 0.1	の、2 び沈砂 9月 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 131 34,412 51 シプ場 9月 253.4 0.1 305.5 213.9 0.1	0.2 対象出状 1 0月 159 1,941 0 燃料使 1 0月 3 17,129 185.3 1,755.3 0 182 37,660 50 50 10月 264.3 0.5 0.1 231.2 327.8 0.1	0.2 1 1月 91 2,325 0 E用状形 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 248.2 0.7 1.1 241.8 289.7 1.0	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487 1 2月 243.4 1.0 0.1 206.7 359.4 0.1	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1月 239.4 0.7 0.2 280.0 258.4 0.3	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3 290.1	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3 264.9 0.1	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527. 7 23, 235. 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944. 0 7. 3 3. 9 2, 946. 6 3, 510. 4 3. 2
No. 2 し査搬搬搬	非常用発 (水汚) (水汚) (水汚) (水汚) (水汚) (水汚) (重塩量量 (水汚) (重塩・デン・利剤剤剤) (重塩・デン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	電機 日	4月 117 1,372 0 16,546 140.3 2,220.0 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5 227.9 0.1 170.9	5月 98 1,668 0 17,349 163.3 2,025.0 870 0 139 35,493 50 5月 246.2 0.9 1.0 221.5 322.4 1.0 298.7	表3—6月 111 1,903 0 8 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3— 6月 250.1 0.4 0.1 244.1 292.3 0.1 124.7	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402 1 8 7月 258.8 0.5 0.1 191.3 384.8 0.1 276.9	2.8 し渣及 8月 93 1,460 0 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月 256.9 0.4 0.8 278.4 278.8 0.1 198.0	の、2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51 シプ場 9月 253.4 0.1 305.5 213.9 0.1 327.9	0.2 対象出状 1 0 月 159 1,941 0 燃料使 1 0 月 3 17,129 186.3 1,755.0 0 182 37,660 50 50 50 50 50 50 50 50 50 5	0.2 1 1月 91 2,325 0 (I用状形 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 (CL) (1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487 1 2月 243.4 1.0 0.1 206.7 359.4 0.1 258.8	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1月 239.4 0.7 0.2 280.0 258.4 0.3 234.5	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3 290.1 0.1 232.2	3月 42 2,258 0 3月 0 14,122 227.7 0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3 264.9 0.1	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527, 7 23, 235, 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944, 0 7, 3 3, 9 2, 946, 6 3, 510, 4 3, 2 2, 750, 7
No. 2 し査搬搬 を 基本 と を と を と を を と と と と と と と り に り に り と り に り と り に り と り と	非常 (水汚) (水汚) (水汚) (水汚) (塩量量 (水汚) (塩塩子・子剤剤剤) (水汚) (塩塩子・子剤剤剤) (水汚) (塩塩子・子剤剤剤) (水場) (水в) (кв)	電機 日 理系) (kg) (kg)	4月 117 1,372 0 16,546 140.3 2,220.0 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5 227.9 0.1 170.9 191.4	5月 98 1,668 0 17,349 163.3 2,025.0 870 975 0 139 35,493 50 5月 246.2 0.9 1.0 221.5 322.4 1.0 298.7 185.6	表3- 6月 0 111 1,903 0 8 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3- 6月 250.1 0.4 0.1 244.1 292.3 0.1 124.7 276.9	1.1 1.6 7月 101 1,690 0 1.7 7月 417,990 220.8 2,010.0 8500 1,423 0 138 28,054 402 188 7月 258.8 0.5 0.1 191.3 384.8 0.1 276.9 224.1	2.8 し渣及 8月 93 1,460 0 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月 256.9 0.4 0.8 278.4 278.8 0.1 198.0 289.9	の、2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 8100 1,371 0 131 34,412 51 シプ場 9月 253.4 0.1 305.5 213.9 0.1 327.9 193.2	0.2 ・搬出状 1 0 月 159 1,941 0 燃料使 1 0 月 3 17,129 186.3 1,755.0 850 1,302 0 182 37,660 50 1 201.2 327.8 0.1 231.2 327.8 0.1 231.2 327.8 0.1 218.0 296.6	1 1 月 2, 325 0 1 1 月 1 1 月 1 16, 134 225. 4 1, 710. 0 850 1, 084 81 241. 8 1 1 月 248. 2 0. 7 1. 1 241. 8 289. 7 1. 1 250. 7 116. 0	1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487 1 2月 243.4 1.0 0.1 206.7 359.4 0.1 258.8 303.6	1 月 122 2,640 0 1 月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1 月 239.4 0.7 0.2 280.0 258.4 0.3 234.5 191.2	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3 290.1 0.1 232.2 218.7	3月 42 2,258 0 3月 0 14,122 227.7 1,755.0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3 264.9 0.1 159.4 275.6	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527. 7 23, 235. 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944. 0 7. 3 3. 9 2, 946. 6 3, 510. 4 3. 2 2, 750. 7 2, 762. 8
No. 2 しし沈 水 水 お ポ カ ボ カ ボ カ ボ カ ボ カ ボ カ ボ カ ボ カ ガ カ ガ カ ガ	非常 (水汚) (水汚) (水汚) (水汚) (塩量量 (水汚) (塩塩子・子剤剤剤) (水汚) (塩塩子・子剤剤剤) (水汚) (塩塩子・子剤剤剤) (水場) (水в) (кв)	電機 日	4月 117 1,372 0 16,546 140.3 2,220.0 936 0 98 47,370 81 4月 233.8 0.0 0.1 276.5 227.9 0.1 170.9	5月 98 1,668 0 17,349 163.3 2,025.0 870 0 139 35,493 50 5月 246.2 0.9 1.0 221.5 322.4 1.0 298.7	表3—6月 111 1,903 0 8 6月 0 17,665 167.9 1,815.0 840 1,187 0 99 29,528 52 表3— 6月 250.1 0.4 0.1 244.1 292.3 0.1 124.7	1.1 1.6 7月 101 1,690 0 1.7 7月 4 17,990 220.8 2,010.0 850 1,423 0 138 28,054 402 1 8 7月 258.8 0.5 0.1 191.3 384.8 0.1 276.9	2.8 し渣及 8月 93 1,460 0 8月 0 18,253 253.0 1,980.0 870 1,541 0 129 34,751 706 中継ポ 8月 256.9 0.4 0.8 278.4 278.8 0.1 198.0	の、2 び沈砂 9月 169 1,841 0 給水・ 9月 4 17,593 227.7 1,875.0 810 1,371 0 131 34,412 51 シプ場 9月 253.4 0.1 305.5 213.9 0.1 327.9	0.2 対象出状 1 0 月 159 1,941 0 燃料使 1 0 月 3 17,129 186.3 1,755.0 0 182 37,660 50 50 50 50 50 50 50 50 50 5	0.2 1 1月 91 2,325 0 (I用状形 1 1月 16,134 225.4 1,710.0 850 1,084 0 115 37,440 81 (CL) (1 2月 143 2,580 0 15,751 223.1 2,205.0 850 722 0 113 44,375 1,487 1 2月 243.4 1.0 0.1 206.7 359.4 0.1 258.8	1,0 1月 122 2,640 0 1月 0 14,711 248.4 2,130.0 780 427 0 106 45,190 2,063 1月 239.4 0.7 0.2 280.0 258.4 0.3 234.5	2月 127 2,084 0 13,099 243.8 1,755.0 640 475 0 104 38,951 1,933 2月 216.0 0.4 0.1 205.3 290.1 0.1 232.2	3月 42 2,258 0 3月 0 14,122 227.7 0 680 403 0 91 40,686 1,205 (単位 3月 233.5 0.4 0.1 264.3 264.9 0.1	合計 1, 373 23, 762 0 合計 12 196, 342 2, 527, 7 23, 235, 0 9, 760 11, 846 453, 910 8, 161 : 時間) 合計 2, 944, 0 7, 3 3, 9 2, 946, 6 3, 510, 4 3, 2 2, 750, 7

表 3-19 機器故障状況(機械関連)

機器名称	内容及び原因	処置及び対応
	満水の警報が発生した。	ボールタップの交換を実
受水槽	原因はボールタップの動作不良によるものであった。	施した。
水処理施設	過負荷の警報が発生した。	電動弁の交換を実施し
No.1-4 終沈汚泥引抜弁	原因は電動弁の故障によるものであった。	た。
水処理施設	異音及び軸部からの漏水が発生した。	ポンプ部の交換を実施し
No.1−3 返送汚泥ポンプ	原因はポンプ部の経年劣化によるものであった。	た。
砂ろ過棟	高架水槽水位異常低の警報が発生した。	逆止弁の交換を実施し
No. 1	原因は逆止弁の破損によるものであった。	た。
高架水槽揚水ポンプ		
重力濃縮棟	封水断の警報が発生した。	フローゲージの交換を実
No. 2	原因はフローゲージの近接スイッチの動作不良による	施した。
濃縮汚泥移送ポンプ	ものであった。	
汚泥濃縮機棟	シャッターの動作不良が確認された。	逆走防止リレーの調整を
濃縮機室西側	原因は逆走防止リレーの誤動作によるものであった。	実施した。
電動シャッター		
生物脱臭棟	pH 計の指示値が低い状況が確認された。	ガラス電極チップ及び液
生物脱臭塔	原因はガラス電極チップ及び液絡部チップの異常によ	絡部チップの交換を実施
No. 3 ユニット	るものであった。	した。
汚泥棟	電動機ブラケット固定用のボルト及びワッシャの脱落	ボルト及びワッシャの交
No.3ケーキコンベヤ	を確認した。	換を実施した。
	原因は振動によるものであった。	
第2ホッパー棟	油圧ポンプが動作しない状況が確認された。	ブレーカーの交換を実施
No. 2	原因はブレーカーの故障によるものであった。	した。
油圧ユニット制御盤		
下矢作	圧力計の指針の破損が確認された。	圧力計の交換を実施し
マンホールポンプ	原因は圧力計の経年劣化によるものであった。	た。
No.1 汚水ポンプ		

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

(2) 電気設備運転管理状況

①電力使用状況

施設の受電電圧は、峡東浄化センター、日川、金川及び浅川汚水中継ポンプ場は高圧 6,600 V、恵林寺、下矢作、西広門田、山梨市南、小石和及び下塩後マンホールポンプは、低圧 200 V (動力)及び 100 V (照明) である。

峡東浄化センター、日川、金川及び浅川汚水中継ポンプ場の使用電力量と流入下水量の表とグラフをそれぞれ表 3-20 ~表 3-23、図 3-10 ~図 3-13 に示す。

浄化センターの使用電力量は、273~325 千 kWh/月の間で推移し、年間として 3,617 千 kWh/年となり、昨年度と比較してほとんど変化がなかった。

浄化センターの原単位電力量と最大需用電力の表とグラフをそれぞれ表3-24、図3-14、図3-15に示す。

原単位電力量は 0.301~0.371kWh/m³の間で推移した。

最大需要電力は、478~523kWの間で推移した。

浄化センターの契約電力は、電力会社との協議による契約電力決定方式により、年間を通じて 550k W であった。

ポンプ場の契約電力は、日川、金川及び浅川汚水中継ポンプ場は実量制による契約電力決定方式により、それぞれ32~52kW、36~47kW及び127~143kWで推移した。

マンホールポンプの契約電力は、設備容量による契約電力決定方式により、恵林寺、下矢作、西広門田、山梨市南、小石和及び下塩後マンホールポンプは、それぞれ 14kW、25kW、25kW、25kW、46kW 及び 17kW である。

②非常用発電設備運転状況

浄化センターでは、保守点検として、1箇月に1回約10分間の無負荷運転と、6箇月に1回約50分間の実負荷運転を実施し、総発電電力量は520kWhであった。

また、8月に落雷による停電があり、発電機1台で2時間39分間の運転を行い、総発電電力量は1,040kWhであり、12月に受変電設備更新工事に伴う作業があり、発電機2台合計で39分間の運転を行い、総発電電力量は20kWhであった。

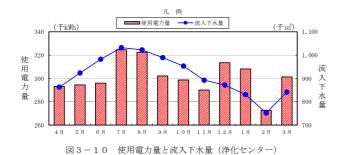
日川、金川及び浅川汚水中継ポンプ場では、保守点検として、1 箇月に1 回約 $5\sim10$ 分間の無負荷運転と、6 箇月に1 回約60 分間の実負荷運転を実施し、総発電電力量はそれぞれ46kWh、23.5kWh 及び117kWh であった。

なお、日川汚水中継ポンプ場では8月に停電があり発電電力量は15kWhであった。また、浅川汚水中継ポンプ場では6月、8月に停電があったが瞬時停電のため発電機給電に切り替わらなかった。

③機器故障状況

本年度の主な機器故障状況を表3-25に示す。

表3-20 使用電力量と流入下水量(浄化センター)


(単位:上段 kWh,下段 ㎡)

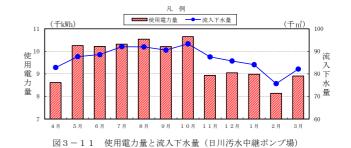
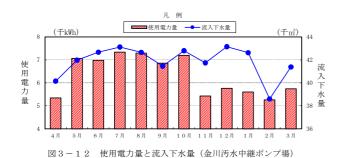

														11117
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	293, 232	294, 408	295, 992	324, 648	322, 440	302, 064	298, 680	289, 968	313, 464	308, 136	272, 544	301, 320	3, 616, 896	301, 408
流入下水量	862, 953	923, 246	982, 042	1, 031, 849	1, 022, 208	989, 158	952, 964	892, 493	871, 197	830, 816	751, 717	841, 149	10, 951, 792	912, 649

表3-21 使用電力量と流入下水量(日川汚水中継ポンプ場)

(単位:上段 kWh,下段 m³)

項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	8, 616	10, 253	10, 219	10, 316	10, 535	10, 209	10, 653	8, 937	9, 049	8, 984	8, 140	8, 907	114, 818	9, 568
流入下水量	82, 850	87, 675	88, 519	92, 046	91, 958	90, 542	93, 296	87, 516	85, 721	84, 089	75, 682	82, 122	1, 042, 016	86, 835

表3-22 使用電力量と流入下水量(金川汚水中継ポンプ場)


(単位:上段 kWh,下段 m³)

													(単位・上段	KWII,广权 III)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	5, 342	7, 068	6, 978	7, 340	7, 296	6, 859	7, 198	5, 430	5, 764	5, 600	5, 260	5, 740	75, 875	6, 323
流入下水量	40, 153	41, 980	42,674	43, 121	42,658	41, 453	42, 806	41,741	43, 147	42, 634	38, 597	41, 389	502, 353	41, 863

表3-23 使用電力量と流入下水量(浅川汚水中継ポンプ場)

(単位:上段 kWh,下段 m3

													(甲位·上段)	KWn, 下权 m/
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	27, 015	32, 123	33, 230	32, 879	33, 449	31, 186	32, 840	28, 905	26, 385	26, 229	23, 639	26, 480	354, 360	29, 530
流入下水量	168, 735	175, 942	179, 446	175, 735	180, 459	168, 048	174, 577	170, 709	165, 352	162, 186	146,660	164, 837	2, 032, 686	169, 391

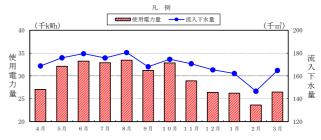
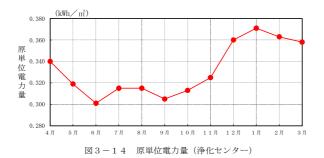



図3-13 使用電力量と流入下水量(浅川汚水中継ポンプ場)

表3-24 原単位電力量と最大需要電力 (浄化センター)

(単位:上段 kWh/m³,下段 kW)

												() 122 221/2	11.11/ 1111 1 1/2 11.11/
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	平均
原単位電力量	0.340	0.319	0.301	0.315	0.315	0.305	0.313	0.325	0.360	0.371	0.363	0.358	0. 332
最大需要電力	499	482	502	523	516	506	478	502	504	497	499	485	499

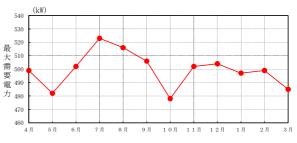


図3-15 最大需要電力(浄化センター)

表 3 - 2 5 機器故障状況 (電気関連)

機器名称	内容及び原因	処置及び対応
汚泥棟	過負荷が発生した。	CV変換器の交換を実
No.1ケーキコンベヤ	原因はコントロールセンタのマルチリレー構成部品	施した。
	(CV変換器) の不良であった。	
下矢作マンホールポンプ	テレメータが停電後に復帰しなかった。	電源基板の交換を実施
動力制御盤	原因はテレメータ装置の電源基板の故障であった。	した。
恵林寺マンホールポンプ	幹線流量センサ異常が発生した。	流量計変換器の修理を
汚水流量計	原因は流量計変換器の故障であった。	実施した。
金川汚水中継ポンプ場	年次点検中に子局異常が発生した。	電源モジュールの交換
子局テレメータ	原因はミニUPS電源消失による子局テレメータの電	を実施した。
	源モジュールの故障であった。	

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

3 水質及び汚泥管理状況

(1) 水質管理状況

①水質試験結果

水質試験結果を表3-26~表3-29、図3-16~図3-17に示す。

流入水質は、年間平均BODが160mg/L、SSが160mg/Lであった。

放流水は、年間を通じて安定して良好な水質で推移した。

②幹線調査結果

幹線調査結果を表3-30に示す。

地点⑭で砒素及びその化合物が、地点①で亜鉛含有量が、地点⑫で溶解性鉄含有量が検出されたが、下水道排除基準を超過することはなかった。

③反応タンク試験結果及び生物試験結果

反応タンク運転状況、反応タンク試験結果及び生物試験結果を表3-31~表3-34に、反応タンクの管理状況を図3-18~図3-19に示す。

反応タンクは最終沈殿池の脱窒による沈殿汚泥の浮上対策、活性汚泥のグラニュール化対策、送 風機の省エネルギー運転を目的として年間を通じて単段式嫌気好気法による硝化抑制運転を行っ た。

SVIは、 $110\sim260$ mL/g の間で推移し、数値の高い時期において固液分離障害が生ずることはなかった。

BOD-SS負荷は、0.08~0.18kg/kg·日の間で推移した。

活性汚泥微生物は微生物の種類も多く、活性汚泥微生物の割合も高く良好な状態であった。

④通日試験結果

通日試験結果を表3-35~表3-38、図3-20~図3-35に示す。

流入負荷は、12:00 頃と 22:00 から 0:00 頃にピークが見られ、2:00 から 6:00 頃にかけて減少する傾向が見られた。

放流水は、水質変動が小さく安定して良好なものであった。

(2) 汚泥管理状況

汚泥処理運転状況を表3-39に、汚泥試験測定結果を表3-40~表3-42に示す。

最初沈殿池で発生する生汚泥は重力濃縮槽へ投入し、最終沈殿池で発生する余剰汚泥はベルト型濃縮機を主機として濃縮し、両者を合わせた混合濃縮汚泥の濃度は年間平均で3.04%となった。

脱水は、二重円筒加圧型脱水機を主機として処理を行った。

脱水ケーキ発生量は、年間 7,222.04 t、含水率は年間平均値で 74.3%となった。なお、脱水ケーキは 56%をセメント原料、44%を肥料原料として全量有効活用した。

(3) その他管理状況

①放流河川調査結果

放流河川調査結果を表3-43~表3-44に示す。

浄化センター放流口の直上流にあたる白井河原橋地点、直下流にあたる中道橋地点ともにほぼ同程度の水質であった。

②臭気測定結果

臭気測定結果(敷地境界)を表3-45に示す。

敷地境界においては、規制値以下の結果であった。

表 3 - 2 6 日常試験分析結果(流入水)

項	1	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	最大	21.0	22. 5	23. 5	25. 5	26.5	26. 5	26. 0	23. 5	21.0	18.5	18.0	20.0	26. 5
	最小	18. 5	21.0	22.0	23.0	25.5	25. 5	24. 0	21.0	18. 5	17.0	17. 0	18.0	17. 0
(℃)	平均	19.7	21.7	22.9	24. 3	26. 2	26. 1	24. 9	22. 3	19.7	17.6	17. 5	18. 4	21.8
水素イオン濃度	最大	7.08	7. 18	7. 07	7.06	7. 18	7. 10	7. 10	7. 10	7. 19	7. 15	7. 27	7. 14	7. 27
	最小	6.85	6.89	6. 78	6.81	6.81	6.85	6.80	6. 78	6. 94	6.83	6.94	6.86	6. 78
	平均	6.97	6. 99	6. 95	6. 90	6. 97	6. 97	6.92	6. 99	7. 05	7.06	7.06	6. 96	6. 98
透視度	最大	4.0	5. 0	5.0	5.0	6.0	6.0	5.0	5.0	5. 0	5.0	5.0	5.0	6.0
	最小	3. 0	3. 0	4.0	4.0	3.0	4.0	4.0	3. 0	3. 0	3.0	3. 0	3.0	3. 0
(cm)	平均	3.8	4.0	4.3	4.3	4.5	4. 4	4. 2	4.0	4. 1	4.0	3. 9	3.8	4. 1
浮遊物質量	最大	220	220	200	180	220	170	190	200	190	220	200	210	220
	最小	150	130	120	120	120	110	110	120	140	140	130	130	110
(mg/L)	平均	180	170	160	150	150	130	150	150	160	170	170	170	160
生物化学的酸素要求量	最大	210	200	230	150	150	170	140	160	200	170	170	230	230
	最小	150	150	140	120	110	130	110	140	120	150	150	160	110
(mg/L)	平均	180	170	180	130	130	150	130	150	150	160	160	180	160
化学的酸素要求量	最大	120	100	94	93	99	83	89	95	88	100	98	100	120
	最小	80	77	66	65	63	65	66	70	74	76	72	81	63
(mg/L)	平均	91	86	78	77	78	71	76	79	81	86	85	90	82
大腸菌群数	最大	190	230	410	500	130	120	180	220	210	160	360	190	500
	最小	120	110	61	130	70	75	81	100	56	80	140	110	56
(千個/cm³)	平均	150	180	220	270	100	100	140	160	130	100	230	160	160

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表 3 - 2 7 日常試験分析結果(放流水)

項	∃	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	最大	21.5	23. 0	24. 0	26. 5	27.0	27.0	26. 5	24.0	21.0	18. 5	18.0	20.0	27. 0
	最小	19.0	21.5	22. 5	23. 5	26.0	26.0	24. 0	21.0	18.0	17. 5	17.0	17.5	17. 0
(℃)	平均	20. 2	22. 2	23. 5	25. 2	26.8	26. 6	25. 2	22. 7	19. 7	18.0	17.6	18.6	22. 2
水素イオン濃度	最大	6. 93	7.04	6.97	6.94	7.02	6. 93	6.99	6. 90	6. 96	6. 92	6. 93	6.93	7. 04
	最小	6.83	6. 79	6.70	6.74	6.74	6. 77	6.63	6. 68	6.71	6.65	6.71	6.63	6. 63
	平均	6.87	6.89	6.80	6.81	6.86	6. 87	6. 76	6. 78	6.80	6.81	6. 78	6. 75	6. 82
透視度	最大	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
	最小	100	>100	>100	100	>100	>100	>100	>100	>100	>100	>100	>100	100
(cm)	平均	100	>100	>100	100	>100	>100	>100	>100	>100	>100	>100	>100	100
浮遊物質量	最大	4. 3	2. 5	2. 2	3.6	2.7	2.8	3.0	3. 2	2. 6	2.6	3.3	3. 5	4. 3
	最小	<1.0	1.2	1.2	1.4	<1.0	1.3	1.4	<1.0	<1.0	1.4	1.4	1.6	<1.0
(mg/L)	平均	2. 4	1.8	1.6	2.6	1.6	2. 1	2. 2	2. 2	1.8	2.0	2. 2	2.3	2. 1
生物化学的酸素要求量	最大	2. 3	2. 5	3. 2	3. 5	4.7	3.0	3. 1	2.4	1. 9	2. 6	2.5	2.6	4. 7
	最小	2. 1	1.6	1.5	2.8	2. 1	2.0	1.9	1.3	1. 5	1.8	1.7	1.6	1.3
(mg/L)	平均	2. 2	2.0	2.3	3. 1	3. 2	2.7	2.5	2.0	1. 7	2. 2	2. 1	2. 2	2.4
化学的酸素要求量	最大	10	10	8.9	9. 7	10	9. 1	10	9. 2	9. 4	9. 5	10	10	10
	最小	9.0	8. 2	7.6	7. 7	7.3	7. 6	8. 2	7.9	7.8	8. 5	8.6	8.9	7. 3
(mg/L)	平均	9. 7	9. 4	8.3	8. 7	8.6	8. 2	9.1	8.5	8. 6	9.0	9.3	9. 6	8. 9
大腸菌群数	最大	0	1	1	2	2	2	3	0	0	0	0	0	3
	最小	0	0	0	0	0	0	0	0	0	0	0	0	0
(個/cm³)	平均	0	0	1	1	1	1	1	0	0	0	0	0	0

※年最大最小平均の欄の平均については、月間平均値の平均値である。

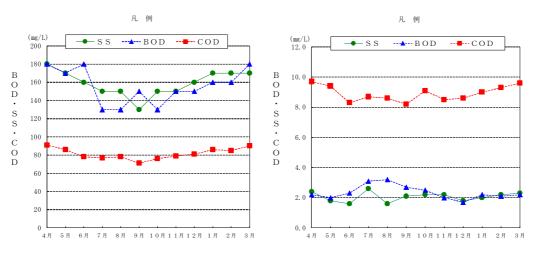


図3-16 流入水の水質変化

図3-17 放流水の水質変化

表 3-28(1) 精密試験分析結果(流入水-1)

		衣る	<u> </u>		<u> </u>		物火 77 1				<u>- 1 / </u>		_		
測定項目	単位		月	5	月		月	7	月		月		月	1 (0月
実施日	_	4	18	2	16	6	20	4	18	1	15	5	19	3	17
水温	$^{\circ}\! \mathbb{C}$	19.0	20.0	21.0	22.0	22.5	23.0	24.0	24.0	25. 5	26. 0	26.0	26. 5	26. 0	25.0
透視度	c m	3.0	4.0	3.0	4.0	4.0	5.0	5.0	4.0	5. 0	4.0	4.0	4.0	4.0	4.0
水素イオン濃度	_	7.02	6. 93	6. 91	6. 94	6. 93	6. 89	6. 90	6.90	6.81	6. 94	7.00	6.85	6.87	6.89
蒸発残留物	mg/L	630	710	460	690	600	540	580	560	630	580	580	740	680	670
強熱残留物	mg/L	270	290	200	300	300	270	260	260	300		280	330	300	
溶解性物質	mg/L	470	510	210	490	460	410	470	430	490		470	540	570	
浮遊物質量	mg/L	170	200	200	190	160	140	150	150	140		130	130	120	
アルカリ度	mg/L	138	138	138	133	129	123	123	120	131	133	115	128	133	
生物化学的酸素要求量	mg/L	190	150	190	200	140	140	150	130	140		130	150	140	
化学的酸素要求量	mg/L	93	91	90	98	81	75	77	70	76		66	72	69	
アンモニア性窒素含有量	mg/L	15. 4	14. 6	15. 9	14. 2	13. 7	11.8	12. 2	11.8	13. 1	14. 6	10. 7	12. 0	13. 2	13. 7
亜硝酸性窒素含有量	mg/L	0.06	0.06	0.04	0.06	0.04	0.04	0.04	0.03	<0.02	0.03	0.05	0.03	0.03	0.04
硝酸性窒素含有量	mg/L	0.85	0.56	0.76	0.52	0. 57	0.63	0.48	0.47	0.44	0. 28	0. 26	0.38	0.37	0.41
有機性窒素含有量	mg/L	13.3	11.3	15.5	13.8	10.3	9. 56	10.3	9.66	10.6	10.8	9. 52	11.0	9.68	11.4
窒素含有量	mg/L	29.6	26. 5	32. 2	28. 5	24.6	22. 1	23.0	22. 0	24. 2	25. 7	20. 5	23. 4	23. 3	25. 6
燐酸イオン態燐含有量	mg/L	2. 96	3. 33	4. 17	3. 06	2. 78	2. 46	3. 18	1. 93	3. 17	3. 35	2. 39	2.34	3. 12	2. 18
燐含有量	mg/L	6. 21	6. 02	6. 97	6. 41	4. 91	4. 29	5. 00	4. 85	4. 98		3. 82	4. 20	4. 54	
大腸菌群数	千個/cm ³	120	130	110	190	410	190	500	230	120		110	96	120	
よう素消費量	mg/L	14	12	110	150	15	7	15	13	17	17	16	14	15	
ノバルキが抽出物質含有量	mg/L	8	10	9	13	10	7	9	6	8		7	7	9	
シアン化合物		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_
フェノール類含有量	mg/L	\0.01	<0.01 —	- 0.01	- (0.01	- 0.01	- (0.01	- (0.01	- (0.01	<0.01		(0.01	(0.01	(0.01	- 0.01
	mg/L	- 0.00													
鉄含有量	mg/L	0.36	0. 28	0. 53	0. 43	0.32	0. 29	0. 31	0. 21	0. 24		0. 29	0. 26	0. 25	
溶解性鉄含有量	mg/L	0. 13	0. 10	0. 11	<0.10	0. 12	<0.10	<0.10	<0.10	<0.10		<0.10	0.11	0. 12	
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	${\rm mg}/L$	_	_	_	_	_	_	_	_	<0.01	_	_	_	_	_
カドミウム及びその化合物	mg/L	_	_	_	_	_	_	_	_	<0.001	_	_	_	_	_
クロム含有量	mg/L	_	_	_	-	_	_	-	_	<0.05	_	_	_	_	_
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.013	0.007	0.012	0.012	0.010	0.008	0.009	0.008	0.010	0.011	0.010	0.011	0.010	0.011
水銀及びアルキル水銀		/O OOOF	<0.0005	/O OOOF	/0.0005	/A AAAF	/A AAAF	/0.0005	/O OOOF	/O OOOF	/0 0005	/O 000F	/O OOOF	/O OOOF	/A AAAF
その他の水銀化合物	mg/L	(0.0005	(0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			(0.0005	<0.0005	<0.0005	(0.0005
トリクロロエチレン	mg/L	_	_	_	_	_	_	_	_	<0.002		_	_	_	_
テトラクロロエチレン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	_	_	_	_	_	_	_	<0.0005	_	_	_	_	_
有機燐化合物	mg/L	_	_	1	1	_	_	1	_	<0.1	_	_	_	_	_
ポリ塩化ビフェニル	mg/L	_	_	_	_	_	_	_	_	<0.0005	_	_	_	_	_
ジクロロメタン	mg/L	_	_	<0.02	_	_	_	_	_	<0.02	_	_	_	_	_
四塩化炭素	mg/L	_	_	_	_	_	_	_	_	<0.002		_	_	_	_
1,2-ジクロロエタン	mg/L	_	_	_	_	_	_	_	_	<0.004		_	_	_	_
1,1-ジクロロエチレン	mg/L	_	_	_	_	_	_	_	_	<0.02		_	_	_	_
シス1, 2-ジクロロエチレン	mg/L	_	_		_	_	_	_	_	<0.04		_	_	_	_
1, 1, 1-トリクロロエタン		_	_		_		_		_	<0.04				_	
	mg/L					_									
1,1,2-トリクロロエタン	mg/L	_		_	_		_	_	_	<0.006		_	_	_	_
1,3-ジクロロプロペン	mg/L	_	_	_	_	_	_	_	_	<0.002		_	_	_	_
チウラム	mg/L		_		_	_	_	_	_	<0.006		_	_	_	_
シマジン	mg/L	_	_	_	-	_	_	-	_	<0.003		_	_	_	_
チオベンカルブ	mg/L				_	_	_	_	_	<0.02		_	_		_
ベンゼン	mg/L	_	_	_		_	_		_	<0.01	_	_	_	_	_
セレン及びその化合物	mg/L	_	_	_	1	_	_	1	_	<0.01	_	_	_	_	_
ほう素及びその化合物	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	0. 14	0. 17	<0.10	0. 12	0. 10	<0.10	<0.10	<0.10	0. 15	0.12	<0.10	0.11	0.11	0.13
アンモニア性窒素、亜硝酸性窒素						i									+
		16 2	15.9	16.7	1/1 9	1/1 9	19 5	19 7	19 9	12 5	1/ Ω	11 A	19 /	12 G	1/1 9
及び硝酸性窒素含有量 1,4-ジオキサン	mg/L	16. 3 —	15. 2 —	16.7	14.8	14. 3	12. 5 —	12.7	12.3	13. 5		11.0	12. 4	13. 6	14. 2

表 3-28(2) 精密試験分析結果(流入水-2)

		表 3 -		(2)			頭分 竹			八八 —				
測定項目	単位		1月	1 2			月		月		月	最大	最小	平均
実施日	_	7	21	5	19	9		5		6	19	_	_	_
水温	$^{\circ}\!\mathbb{C}$	23. 0	22. 0	21.0	19.5	18.0	18.0	17. 5	17. 5		18. 0	26. 5	17. 5	21.8
透視度	ст	4.0	4.0	4.0	3. 0	4.0	4.0	3. 0	4. 0	4. 0	4. 0	5. 0	3. 0	4.0
水素イオン濃度	_	6.89	6. 98	7.00	7. 00	7. 15	6. 96	7.05	7.00	6. 91	6. 99	7. 15	6.81	6. 95
蒸発残留物	mg/L	610	690	720	720	690	810	730	700	780	690	810	460	660
強熱残留物	mg/L	350	330	390	340	320	440	430	430	350	320	440	200	320
溶解性物質	mg/L	480	530	580	510	510	650	570	570	580	570	650	210	500
浮遊物質量	mg/L	150	140	160	190	190	150	180	140	180	160	200	120	160
アルカリ度	mg/L	132	130	130	133	138	134	137	130	139	134	139	115	131
生物化学的酸素要求量	mg/L	150	140	140	200	170	170	170	150	180	160	200	130	160
化学的酸素要求量	mg/L	76	78	74	84	83	83	78	72	97	97	98	66	81
アンモニア性窒素含有量	mg/L	11.9	14. 1	14. 6	15. 4	17.3	16.8	16. 5	16.8	15. 5	18. 0	18. 0	10. 7	14. 3
亜硝酸性窒素含有量	mg/L	0.03	0.07	0.05	0.04	0.05	0.04	0.06	0. 13	0.06	0.05	0. 13	<0.02	0.05
硝酸性窒素含有量	mg/L	0.35	0. 43	0.46	0. 64	0.65	0. 69	0.53	0.70	0. 52	0.43	0.85	0. 26	0. 52
有機性窒素含有量	mg/L	10. 2	10.8	9.00	14. 0	11. 2	10.6	11.6	10.8	10. 2	10. 9	15. 5	9. 00	11. 1
室素含有量	mg/L	22. 4	25. 5	24. 1	30. 1	29. 2	28. 1	28. 7	28. 4	26. 2	29. 4	32. 2	20. 5	26. 0
燐酸イオン態燐含有量	mg/L	2. 88	3. 15	2. 72	3. 02	3. 49	3. 25	3. 58	3. 15	2. 38	4. 83	4. 83	1. 93	3. 04
燐含有量	mg/L	5. 05	5. 36	4. 80	5. 52	5. 86	5. 23	5. 92	5. 27	4. 74	7. 03	7. 03	3. 81	5. 25
大腸菌群数	千個/cm ³	120	220	110	210	80	160	200	360	180	190	500	80	190
よう素消費量	mg/L	11	10	13	11	12	13	10	11	_	7	17	7	13
ノルマルヘキサン抽出物質含有量 シススンルク物	mg/L	6	6	10	13	12	13	12	12	13	11	13	6	/0.01
シアン化合物フェノール類含有量	mg/L mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.50	<0.01	<0.01	<0.01	<0.01 <0.50	<0. 01 <0. 50	<0. 01 <0. 50
鉄含有量	mg/L mg/L	0. 20	0 10	0. 23	0. 25		0. 22			0. 24		0. 53	0. 13	
溶解性鉄含有量	mg/L	<0.10	0. 19	<0.10	<0. 10	(0. 10	<0.10	0. 13	0.14	<0.10	0. 24	0. 53	<0.13	0. 26
一 マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.11	<0.13	<0.10	<0.10
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	-	-	-	-	-	-	<0.10	-	-	-	<0.01	<0. 10	<0.10
カドミウム及びその化合物	mg/L	_	_	_	_		_	<0.001	_	_	_	<0.001	<0.001	<0.001
クロム含有量	mg/L	_	_	_	_		_	<0.05	_	_	_	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0. 011	0. 012	0.012	0.013	0. 013	0.014	0. 011	0.013	0.013	0.012	0.014	0.007	0.011
水銀及びアルキル水銀		<0.0005	/n nnn5	/O OOOE	/n non5	/n nnns	/O 0005	<0.0005	/O OOOE	/O 0005	/O OOO5	<0.0005	<0.0005	<0.0005
その他の水銀化合物	mg/L	\0. 0005	\0. 0005	10.000 3	\0. 0005	\0. 0003				\0. 0005				
トリクロロエチレン	mg/L	_	_		_		_	<0.002		_		<0.002	<0.002	<0.002
テトラクロロエチレン		<0.0005		<0.0005	<0.0005	<0.0005				<0.0005	<0.0005			
アルキル水銀化合物	mg/L	_	_	_	_		_	<0.0005	_	_	_	<0.0005	<0.0005	
有機燐化合物	mg/L	_	_	_	_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	- /0.00	_	_	_	_	_	<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	<0.02		_	_		_	<0.02	_	_	_	<0.02	<0.02	<0.02
四塩化炭素 1, 2-ジクロロエタン	mg/L			_	-		_	<0.002	_	_	_	<0.002 <0.004	<0.002 <0.004	<0.002
1, 1-ジクロロエタン	mg/L			_			_	<0.004	_	_	_		<0.004	<0.004
シス1,2-ジクロロエチレン	mg/L mg/L			_	_		_	<0.02		_	_	<0.02 <0.04	<0.02	<0.02
1, 1, 1-トリクロロエタン	mg/L mg/L			_			_	<0.04	_	_	_	<0.001	<0.001	<0.04
1, 1, 1-トリクロロエタン 1, 1, 2-トリクロロエタン	mg/L mg/L			_			_	<0.001	_	_	_	<0.001	<0.001	<0.001
1, 3-ジクロロプロペン	mg/L						_	<0.000	_	_		<0.000	<0.008	<0.008
チウラム	mg/L			_			_	<0.002		_	_	<0.002	<0.002	<0.002
シマジン	mg/L	_		_	_		_	<0.003		_	_	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	_	_	_		_	<0.003	_	_	_	<0.003	<0.003	<0.003
ベンゼン	mg/L	_	_	_	_		_	<0.01	_	_	_	<0.01	<0.02	<0.01
セレン及びその化合物	mg/L	_	_	_	_	_	_	<0.01	_	_	_	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0		<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	0. 14		0. 16	0. 17	0. 16			0. 17	0. 12	0. 14	0. 18	<0.10	0. 11
アンモニア性窒素、亜硝酸性窒素	mg/L	12. 3	14. 6	15. 1	16. 1	18. 0	17. 5		17. 6		18. 5	18. 5	11. 0	14. 9
及び硝酸性窒素含有量	_		14.0		10. 1						10. 0			
1,4-ジオキサン	mg/L	_	_	_	_		_	<0.05	_	_	_	<0.05	<0.05	<0.05

表 3-29(1) 精密試験分析結果(放流水-1)

			: 3 - 2		1/		試験			<u> </u>			1	_	1	
測定項目	単位	水質基準		月		月		月		月	8			月	1 (
実施日	_		4	18	2	16	6	20	4	18	1	15	5	19	3	17
水温	$^{\circ}$		19. 5	21.0	21.5	22.0	23.0	23. 5	25.0	25. 5	26.0	27. 0	26. 5	27.0	26. 5	25. 5
透視度	c m		>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
水素イオン濃度	_	5.8~8.6	6.88	6.87	6.81	6.88	6.84	6.70	6.80	6. 77	6.86	6.84	6.89	6. 93	6. 79	6.72
蒸発残留物	mg/L		430	470	220	450	440	400	420	380	440	390	450	510	560	500
強熱残留物	mg/L		230	260	180	260	280	240	270	240	320	290	280	300	290	280
溶解性物質	mg/L		420	450	210	450	430	400	410	360	430	380	440	490	550	480
浮遊物質量	mg/L	40 (30)	3. 5	2. 1	2. 2	2.0	1.4	2. 1	2.4	2.7	2.3	1.1	2. 1	1.9	1.7	2. 3
アルカリ度	mg/L		143	142	140	143	135	113	124	122	126	132	105	125	128	116
生物化学的酸素要求量	mg/L	10(10)	2. 3	2. 1	2. 5	2.0	1.5	2.4	2.8	2.8	2.6	2.7	3.0	2.0	2.3	1. 9
化学的酸素要求量	mg/L		9. 6	9. 4	9. 7	9.8	8.3	8.4	7.8	8.5	8.4	7.8	8.1	8. 1	8. 7	9. 2
アンモニア性窒素含有量	mg/L		16. 6	15. 5	17. 6	16. 1	14.6	9. 70	11.2	9. 73	12.0	12.7	7. 34	11. 3	12.0	11. 3
亜硝酸性窒素含有量	mg/L		0.11	0.04	0.03	<0.02	0.11	0.76	0.13	0. 28	0.39	0.20	0.69	0. 15	0. 24	1.03
硝酸性窒素含有量	mg/L		0.16	<0.16	<0.16	<0.16	<0.16	0. 17	0. 23	0. 28	<0.16	<0.16	<0.16	0. 20	0.21	0.58
有機性窒素含有量	mg/L		1.88	2.09	0.94	1.09	0.89	1.00	0.53	0.60	0.66	0.79	1.79	0.49	0.89	0.76
窒素含有量	mg/L		18. 7	17. 6	18.5	17. 2	15.7	11.6	12. 1	10.9	13.2	13. 9	9.85	12. 1	13.4	13. 7
燐酸イオン態燐含有量	mg/L		0.12	0. 29	0.22	1.02	0.56	0. 92	3. 16	0. 27	0.43	0.47	1.88	0. 32	0.81	1.00
燐含有量	mg/L		0.35	0.45	0.40	1. 19	0.70	1. 02	3. 43	0.40	0.59	0.55	2. 11	0.44	1.01	1. 18
大腸菌群数	個/cm ³	1,000	0	0	0	0	1	0	1	2	1	0	0	0	0	0
よう素消費量	mg/L		7	<5	7	7	7	6	8	5	9	6	6	6	6	<5
ノルマルヘキサン抽出物質含有量	mg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	_	_	_	_	_	_	_	_	<0.50	_	_	_	_	_
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0.1	_	_	_	_	_	_	_	_	<0.01	_	_	_	_	_
カドミウム及びその化合物	mg/L	不検出	_	_	_	_	_	_	_	_	<0.001	_	_	_	_	_
クロム含有量	mg/L	0.5	_	_	_	_	_	_	_	_	<0.05	_	_	_	_	_
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.05	0.011	0.005	0.009	0.009	0.009	0.007	0.008	0.008	0.008	0.010	0.009	0.010	0.009	0.010
水銀及びアルキル水銀	mg/L	0, 005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
その他の水銀化合物 トリクロロエチレン											<0.002					
テトラクロロエチレン	mg/L	0. 1	<0.0005												<0.0005	
	mg/L	0.1	\U. UUU5	<0.0005	.v. 0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005 —		\0. 0005	\0. 0005 -	<0.0005
アルキル水銀化合物 有機燐化合物	mg/L	不検出		_		_		_	_	_	<0.0005			_	_	_
ポリ塩化ビフェニル	mg/L					_		_			<0. 1			_	_	
ジクロロメタン	mg/L mg/L	0.003		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.0005	<0.02	<0.02	<0.02	<0.02	<0.02
四塩化炭素		0. 2		-	- (0.02	- (0.02	- (0. 02	- (0.02	- (0.02	-	<0.02	- (0. 02	\U. UZ	\U. UZ	- (0.02	- (0.02
四塩化灰茶 1,2-ジクロロエタン	mg/L mg/L	0. 02		_		_		_	_	_	<0.002			_	_	_
1, 1-ジクロロエチレン	mg/L mg/L	0.04	_	_		_		_	_	_	<0.004		_	_	_	_
シス1, 2-ジクロロエチレン	mg/L mg/L	0. 4		_		_		_	_	_	<0.02	-		_	_	_
1, 1, 1-トリクロロエタン	mg/L mg/L	0.4		_				_	_		<0.04	_	_	_	_	
1, 1, 1-トリクロロエタン 1, 1, 2-トリクロロエタン	mg/L mg/L	0.06		_		_		_	_	_	<0.001			_	_	_
1, 1, 2-トリクロロエタン 1, 3-ジクロロプロペン	mg/L mg/L	0.06		_		_		_	_	_	<0.000			_	_	_
チウラム		0.02		_		_		_	_	_	<0.002			_	_	_
シマジン	mg/L mg/L	0.00		_						_	<0.008		_	_	_	_
チオベンカルブ	mg/L mg/L	0.03				_		_	_		<0.003			_	_	_
ベンゼン	mg/L mg/L	0. 2		_		_		_	_	_	<0.02			_	_	_
	mg/L mg/L	0. 1	_	_						_	<0.01		_	_		_
セレン及びその化合物 ほう素及びその化合物						/1 0	/1 0			<1.0			/1 0	/1 0	/1 0	
よっ素及びその化合物	mg/L	10		<1.0	<0.10		<0.10	<1. 0 <0. 10	<1.0 <0.10	<0.10	<1.0	<1. 0 0. 12	<0.10		<0.10	<1. 0 0. 11
かつ素及いての化合物 アンモニア、アンモニウム化合物、亜硝	mg/L			0.11							0. 11					
酸化合物及び硝酸化合物	mg/L	100	6. 91	6. 24	7. 07	6. 44	5. 95	4. 81	4. 84	4. 45	5. 19	5. 28	3. 63	4. 87	5. 25	6. 13
1,4-ジオキサン	${\rm mg/L}$	0.5	_	_		_		_	_	_	<0.05	_	_	_	_	_
							_					_				

表 3 - 2 9 (2) 精密試験分析結果(放流水-2)

		表		,	2)		試験分		1	(流水					
測定項目	単位	水質基準		1月		2月	1		_	月	_	月	最大	最小	平均
実施日	_		7	21	5	19	9	23	5	20	6	19	_	-	-
水温	$^{\circ}$		23. 5	22.0	20.5	19. 5	17. 5	18.0	17.5	17. 5	18.0	17. 5	27. 0	17. 5	22. 1
透視度	c m		>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
水素イオン濃度	_	5.8~8.6	6.69	6. 76	6.73	6.81	6.84	6. 79	6.75	6. 78	6.65	6.80	6. 93	6.65	6.80
蒸発残留物	mg/L		500	480	580	470	490	650	580	560	530	520	650	220	480
強熱残留物	mg/L		290	320	380	310	270	400	400	410	320	320	410	180	300
溶解性物質	mg/L		480	450	550	400	490	650	540	560	520	510	650	210	460
浮遊物質量	mg/L	40 (30)	2.8	1. 9	1.4	2. 2	2.2	2. 2	2.5	3.3	2.2	3. 3	3. 5	1. 1	2. 2
アルカリ度	mg/L		120	120	115	133	133	139	133	133	138	138	143	105	129
生物化学的酸素要求量	mg/L	10(10)	2. 4	1. 9	1.6	1.9	2.6	2. 4	2.0	2.3	2. 1	2.6	3. 0	1. 5	2. 3
化学的酸素要求量	mg/L		8.3	8.4	8. 2	9.0	9.3	9.4	9.1	9.3	9.6	10	10	7.8	8. 9
アンモニア性窒素含有量	mg/L		10.9	11. 3	10.6	13. 9	16.6	14. 3	14. 9	15. 3	14. 7	16. 2	17.6	7.34	13. 2
亜硝酸性窒素含有量	mg/L		0.26	0. 17	0.16	0.07	0. 11	0. 27	0. 23	0. 22	0.21	0. 26	1.03	<0.02	0. 26
硝酸性窒素含有量	mg/L		1.12	2. 20	2.03	0.33	0.35	0.48	0. 29	0. 27	0.20	0. 20	2. 20	<0.16	0.39
有機性窒素含有量	mg/L		0.92	1. 26	1. 29	0.77	1.48	1.50	1. 24	0.92	0.78	1. 55	2.09	0.49	1.09
窒素含有量	mg/L		13. 2	14. 9	14. 0	15. 1	18.5	16. 5	16.7	16. 7	15.8	18. 2	18.7	9.85	14. 9
燐酸イオン態燐含有量	${\rm mg}/{\rm L}$		1.02	0.68	0.28	0. 27	0.89	1. 08	0. 91	0.44	0.40	0. 24	3. 16	0.12	0.74
燐含有量	mg/L		1. 29	0.82	0.41	0.42	1.05	1. 21	1.04	0.60	0. 57	0.41	3. 43	0.35	0. 90
大腸菌群数	個/cm ³	1,000	0	0	0	0	0	0	0	0	0	0	2	0	0
よう素消費量	mg/L		6	<5	<5	<5	<5	<5	<5	<5	5	<5	9	<5	<5
/ルマルヘキサン抽出物質含有量	${\rm mg}/{\rm L}$	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	_	_	_	_	_	_	<0.50	_	_	_	<0.50	<0.50	<0.50
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0. 1	_	_	_	_	_	_	<0.01	_	_	-	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	不検出	_	_	_	_	_		<0.001	_	_	_	<0.001	<0.001	<0.001
クロム含有量	mg/L	0. 5	_	_	_	_	_		<0.05	_	_	_	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.05	0.010	0.011	0.010	0.010	0.012	0.013	0.012	0.012	0.012	0.012	0.013	0.005	0.010
水銀及びアルキル水銀 その他の水銀化合物	${\rm mg}/{\rm L}$	0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	0. 1	_	_	-	_	_	_	<0.002	-	_	_	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	不検出	_	_	-	_	_	_	<0.0005	-	_	_	<0.0005	<0.0005	<0.0005
有機燐化合物	mg/L	不検出	_	_	_	_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	0.003	_	_	_	_	_	_	<0.0005	_	_	-	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	0.02	_	_	-	-	_	-	<0.002	-	-	_	<0.002	<0.002	<0.002
1, 2-ジクロロエタン	mg/L	0.04	_	_	I	_	_	_	<0.004	I	_	_	<0.004	<0.004	<0.004
1, 1-ジクロロエチレン	${\rm mg/L}$	1	_	_	ı	_	_	_	<0.02	ı	_	_	<0.02	<0.02	<0.02
シス1, 2-ジクロロエチレン	${\rm mg/L}$	0.4	_	_	ı	_	_	_	<0.04	ı	_	_	<0.04	<0.04	<0.04
1, 1, 1-トリクロロエタン	${\rm mg/L}$	3	_	_	-	_	_	-	<0.001	ı	_	_	<0.001	<0.001	<0.001
1, 1, 2-トリクロロエタン	mg/L	0.06	_	_	ı	_	_	-	<0.006	ı	_	_	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	mg/L	0.02	_	_	-	_	_	_	<0.002	-	_	_	<0.002	<0.002	<0.002
チウラム	${\rm mg}/{\rm L}$	0.06	_	_	-	_	_	_	<0.006	-	_	_	<0.006	<0.006	<0.006
シマジン	mg/L	0.03	_	_	-	_	_	_	<0.003	-	_	_	<0.003	<0.003	<0.003
チオベンカルブ	${\rm mg}/{\rm L}$	0.2	_	_	-	_	_	_	<0.02	-	_	_	<0.02	<0.02	<0.02
ベンゼン	${\rm mg}/{\rm L}$	0.1	_	_	I	_	_	_	<0.01	I	_	_	<0.01	<0.01	<0.01
セレン及びその化合物	${\rm mg}/{\rm L}$	0. 1	_	_	I	_	_	_	<0.01	I	_	_	<0.01	<0.01	<0.01
ほう素及びその化合物	${\rm mg}/{\rm L}$	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	${\rm mg}/{\rm L}$	1	0.11	0.11	0.12	0. 17	0. 14	0. 15	0.13	0.15	0.12	<0.10	0.17	<0.10	<0.10
アンモニア、アンモニウム化合物、亜硝酸化合物及び硝酸化合物	mg/L	100	5. 74	6.89	6. 43	5. 96	7. 10	6. 47	6. 48	6. 61	6. 29	6. 94	7. 10	3. 63	5. 92
<u>酸化合物及び硝酸化合物</u> 1,4-ジオキサン	mg/L	0. 5	_	_	_	_	_	_	<0.05	_	_	_	<0.05	<0.05	<0.05
-, - + .+ . / *	8/ L	0.0	<u> </u>	I .		1	1		\v. vo				\v. v0	10.00	\U. UU

表 3 - 3 0 (1) 幹線調査分析結果-1

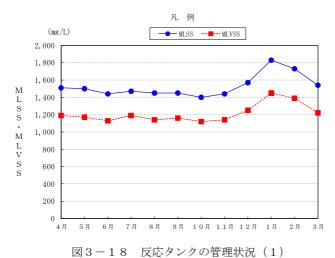
	測定項目	単位	排除基準	1	2	3	4	(5)	6	7	8
	採水月日			5月8日	5月8日	5月8日	5月9日	5月9日	5月8日	5月8日	
	採水時刻			9:30	9:55	10:15	9:05	9:50	10:40	11:05	
	カドミウム及びその化合物	mg/L	不検出	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
	シアン化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
	有機燐化合物	mg/L	不検出	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	鉛及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
	六価クロム化合物	mg/L	0. 05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
	砒素及びその化合物	mg/L	0. 05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	水銀及びアルキル水銀	mg/L	0. 005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
	その他の水銀化合物 アルキル水銀化合物		不検出	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
	ポリ塩化ビフェニル	mg/L	0.003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
	トリクロロエチレン	mg/L									
政		mg/L	0. 1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
	テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
令夕	処ジクロロメタン	mg/L	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
	四塩化炭素	mg/L	0.02	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
で!	理 1,2-ジクロロエタン	mg/L	0.04	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	
	1,1-ジクロロエチレン	mg/L	1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
定	困 シス1, 2-ジクロロエチレン	mg/L	0.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
	1,1,1-トリクロロエタン	mg/L	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
め真	難 1,1,2-トリクロロエタン	mg/L	0.06	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	
	1,3-ジクロロプロペン	${\rm mg}/{\rm L}$	0.02	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
る 4	物チウラム	mg/L	0.06	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	
47 5	シマジン	${\rm mg}/{\rm L}$	0.03	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
物質	質 チオベンカルブ	${\rm mg}/L$	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
55	ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
質	セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
	ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
	ふっ素及びその化合物	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
	1, 4-ジオキサン	mg/L	0. 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
	銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
	亜鉛含有量	mg/L	1	0. 12	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
	溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
	溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
	クロム含有量	mg/L	0. 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
	アンモニア性窒素、亜硝酸性窒素	mg/L	380	13.8	25. 8	15. 8	17. 4	27. 3	13. 7	11.8	
条	及び硝酸性窒素含有量 生物化学的酸素要求量	mg/L	600	150	260	210	160	250	190	110	
例が	理 浮遊物質量	mg/L	600	130	250	180	160	260	180	100	
定す	可	mg/L	30	21	18	27	13	8	17	8	
め自る事	HC .	mg/ L	5~9	6. 85	7. 05	6. 96	7. 04	7. 07	6. 87	6. 83	
物質	質	°C	—								
質	水温		45 220	20. 0	19. 5	23. 5	20. 0	19. 0	21. 0	19. 5	
	よう素消費量	mg/L	220		16					245 255	
その				微白濁	微黄濁	微黄濁	微黄濁	微白濁	微黄濁	微白濁	
-	化学的酸素要求量	mg/L	7	87	120	110	86	140	110	70	
備考	7	上流市名	3								
		山梨市	m III -								
		山梨市、	甲州市								
		甲州市									
		山梨市									
		山梨市、	甲州市								
		甲州市									
	⑦ 日川幹線	甲州市									
	⑧ 笛吹川幹線	(欠番)									
	※⑧は、市町村合併によ	り欠番と	こしている。								

表 3 - 3 0 (2) 幹線調査分析結果 - 2

	測定項目	単位	排除基準	9	10	11)	12	13	14)	15
	採水月日			\			5月9日	5月9日	5月8日	5月9日
	採水時刻						10:55	11:20	8:30	10:20
	カドミウム及びその化合物	mg/L	不検出	1			<0.001	<0.001	<0.001	<0.001
	シアン化合物	mg/L	0. 1	_			<0.01	<0.01	<0.01	<0.01
	有機燐化合物	mg/L	不検出				<0. 1	<0.1	<0.1	<0.1
	鉛及びその化合物	mg/L	0.1	_			<0.01	<0.01	<0.01	<0.01
	六価クロム化合物	mg/L	0.05	_			<0.01	<0.01	<0.01	<0.01
	砒素及びその化合物	mg/L	0.05	_			<0.005	<0.005	0. 015	<0.005
	水銀及びアルキル水銀	_								
	その他の水銀化合物	mg/L	0.005				<0.0005	<0.0005	<0.0005	<0.0005
	アルキル水銀化合物	mg/L	不検出				<0.0005	<0.0005	<0.0005	<0.0005
	ポリ塩化ビフェニル	mg/L	0.003				<0.0005	<0.0005	<0.0005	<0.0005
政	トリクロロエチレン	mg/L	0. 1				<0.002	<0.002	<0.002	<0.002
	テトラクロロエチレン	mg/L	0.1				<0.0005	<0.0005	<0.0005	<0.0005
令 処	ジクロロメタン	mg/L	0. 2				<0.02	<0.02	<0.02	<0.02
	四塩化炭素	mg/L	0.02				<0.002	<0.002	<0.002	<0.002
で理	1,2-ジクロロエタン	mg/L	0.04				<0.004	<0.004	<0.004	<0.004
	1,1-ジクロロエチレン	mg/L	1		\		<0.02	<0.02	<0.02	<0.02
定压	シス1, 2-ジクロロエチレン	mg/L	0. 4				<0.04	<0.04	<0.04	<0.04
	1, 1, 1-トリクロロエタン	mg/L	3				<0.001	<0.001	<0.001	<0.001
め難	1, 1, 2-トリクロロエタン	mg/L	0.06				<0.006	<0.006	<0.006	<0.006
	1, 3-ジクロロプロペン	mg/L	0.02				<0.002	<0.002	<0.002	<0.002
る物	チウラム	mg/L	0.06		\		<0.006	<0.006	<0.006	<0.006
	シマジン	mg/L	0.03				<0.003	<0.003	<0.003	<0.003
物質	チオベンカルブ	mg/L	0.2				<0.02	<0.02	<0.02	<0.02
	ベンゼン	mg/L	0. 1				<0.01	<0.01	<0.01	<0.01
質	セレン及びその化合物	mg/L	0. 1				<0.01	<0.01	<0.01	<0.01
	ほう素及びその化合物	mg/L	10		<u> </u>		<1.0	<1.0	<1.0	<1.0
	ふっ素及びその化合物	mg/L	1		\		<0.10	<0.10	<0.10	<0.10
	1, 4-ジオキサン	mg/L	0. 5		1		<0.05	<0.05	<0.05	<0.05
	フェノール類含有量	mg/L	1		1		<0.50	<0.50	<0.50	<0.50
	銅含有量	mg/L	1			\	<0.10	<0.10	<0.10	<0. 10
	亜鉛含有量	mg/L	1				<0.10	<0.10	<0.10	<0. 10
	溶解性鉄含有量	mg/L	1				0. 18	<0.10	<0.10	<0.10
	溶解性マンガン含有量	mg/L	1				<0.10	<0.10	<0.10	<0. 10
	クロム含有量		0.5				<0.10	<0. 10	<0.10	<0. 10
	アンモニア性窒素、亜硝酸性窒素	mg/L								
条	及び硝酸性窒素含有量	mg/L	380				23. 7	19. 9	23. 5	24. 4
例如		mg/L	600				190	200	140	410
で理定可	浮遊物質量	mg/L	600				220	310	140	220
め能	ノルマルヘキサン抽出物質含有量	mg/L	30				9	7	12	30
る物質	水素イオン濃度	_	5~9				7. 08	7. 18	7. 03	7. 12
質	水温	°C	45				20. 0	20.0	21. 5	19. 5
	よう素消費量	mg/L	220				26	27	12	30
その他	色	-				\	微黄濁	微白濁	微白濁	微黄濁
	化学的酸素要求量	mg/L				\	120	160	80	220
備考	番号 幹線名	上流市名	7							
	⑨ 日川幹線	(欠番)								
	⑩ 金川幹線	(欠番)								
	⑪ 浅川幹線	(欠番)								
	② 浅川幹線	笛吹市								
	③ 浅川幹線	笛吹市、	甲府市							
	④ 笛吹川幹線	全市								
	⑤ 峡東ネットワーク幹線	山梨市								
	※⑨~⑪は、市町村合f	第によりか	で番としてい	いる。						
Щ_	***									

表3-31 反応タンク運転状況

	-			Т	11.	0 0 1			E +41/1/1/				1	
項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
流入	最大	35, 798	34, 457	42, 572	36, 036	50, 462	38, 134	37, 878	35, 033	29, 572	28, 145	28, 827	29, 221	50, 462
下 水 量	最小	26, 668	27, 182	28, 753	30,600	29, 459	29, 047	27, 853	27, 093	26, 651	25, 357	25, 018	25, 639	25, 018
(m³/目)	平均	28, 765	29, 782	32, 735	33, 285	32, 974	32, 972	30, 741	29, 750	28, 103	26, 801	26, 847	27, 134	30, 005
反応タンク	最大	39, 069	37, 684	45, 618	38, 766	53, 448	41, 583	41, 218	38, 302	33, 135	31, 554	32, 434	32, 665	53, 448
流入水量	最小	30, 251	30, 421	31, 848	33, 707	32, 626	32, 528	31, 176	30, 472	30,000	28, 887	28, 417	28, 926	28, 417
(m³/日)	平均	32, 141	33, 063	35, 922	36, 302	36, 212	36, 255	34, 086	33, 130	31, 669	30, 321	30, 325	30,650	33, 353
返 送	最大	20, 036	19, 446	23, 322	20, 019	27, 439	21, 515	20, 457	19, 441	17,009	16, 379	16, 777	16, 792	27, 439
汚 泥 量	最小	15, 735	15, 761	16, 558	17, 518	16, 966	16, 918	16, 489	15, 787	15, 566	14, 970	14, 783	15,024	14, 783
(m³/日)	平均	16, 709	17, 168	18, 586	18,777	18, 779	18, 768	17, 728	17, 143	16, 393	15, 724	15, 714	15, 908	17, 290
返 送	最大	52. 4	52. 1	52.0	52. 4	52.0	52. 2	53. 2	52. 1	52.0	52. 4	52.4	52.0	53. 2
汚 泥 率	最小	51. 3	50.9	49. 6	51. 2	50.8	51. 1	49.6	50.8	51. 2	50. 7	50.4	51. 4	49. 6
(%)	平均	52.0	51.9	51.7	51. 7	51.9	51.8	52.0	51. 7	51.8	51. 9	51.8	51. 9	51.8
余 剰	最大	911	642	711	665	658	660	810	657	648	602	615	848	911
汚 泥 量	最小	348	437	400	330	398	375	299	321	389	309	388	430	299
(m³/日)	平均	601	525	530	548	542	545	505	515	519	445	474	591	529
送 風 量	最大	81, 711	78, 658	81, 762	85, 942	90, 845	79, 640	83, 898	90, 290	89, 920	76, 691	74, 037	77, 141	90, 845
	最小	68, 429	64, 111	63, 642	65, 374	67, 597	66, 242	70,810	70, 962	68, 977	65, 569	63, 607	43, 819	43, 819
(m³/目)	平均	75, 986	72, 189	75, 099	76, 903	77, 971	75, 847	79, 275	79, 688	75, 967	71, 194	68, 997	65, 240	74, 552
送 風	最大	2. 6	2.5	2.5	2. 4	2.6	2. 4	2.6	2. 9	2.9	2.6	2.4	2.6	2.9
倍 率	最小	2. 1	1.8	1.6	1. 7	1.4	1.8	1. 7	2. 0	2.2	2. 2	2. 1	1.5	1.4
(倍)	平均	2. 4	2.2	2. 1	2. 1	2.2	2. 1	2.3	2. 4	2.4	2. 3	2.3	2. 1	2. 2
滞留	最大	11. 1	11.0	10.6	10.0	10.3	10. 3	10.8	11. 0	11.2	11.6	11.8	11.6	11.8
時 間	最小	8.6	8.9	7. 4	8. 7	6.3	8. 1	8. 2	8.8	10. 1	10.6	10.4	10. 3	6. 3
(H r)	平均	10.5	10. 2	9.4	9. 3	9.4	9. 3	9.9	10. 2	10.6	11. 1	11. 1	11.0	10. 2


表3-32 反応タンク試験結果(1)

_	_					双3-		又心クノ			1 /				
項	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	В	最大	22.0	23. 5	24. 5	26. 5	27.0	27. 0	26. 5	24. 0	21.0	18. 5	18. 0	20.0	27. 0
\(\C)	imi.	最小	19.0	21.0	23.0	24.0	26.0	26. 0	24. 0	21.5	18. 5	18.0	17. 5	18.0	17. 5
(0)		平均	20.3	22.4	23.7	25. 1	26. 7	26. 6	25. 2	22.7	19.8	18.0	17.8	18.6	22. 2
		最大	6.83	6.87	6.87	6.82	6.92	6.85	6.82	6.75	6.81	6.76	6.83	6. 76	6. 92
	ML	最小	6.75	6.68	6. 56	6. 59	6.64	6.67	6.48	6. 57	6.58	6.57	6.62	6. 55	6.48
рΗ		平均	6.80	6.80	6.70	6.68	6.75	6.76	6.67	6.66	6.69	6.68	6.68	6.66	6.71
pII		最大	6.83	6.88	6.86	6.88	6.94	6.89	6.82	6.85	6.95	6.89	6.85	6.84	6. 95
		最小	6.67	6.70	6.62	6.61	6.66	6.64	6.56	6.61	6.63	6.69	6.65	6.58	6. 56
		平均	6.76	6.78	6.73	6.71	6. 79	6.76	6.70	6.75	6.75	6.77	6. 75	6.73	6. 75
DO		最大	0.4	0.3	0.3	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.4
(mg/L)		最小	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
(g, D)		平均	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
MLSS		最大	1,620	1,640	1,520	1,580	1,530	1,520	1, 480	1,520	1,710	1, 960	1,820	1,650	1, 960
(mg/L)	L	最小	1,460	1,370	1, 350	1, 350	1, 320	1, 350	1, 290	1, 350	1, 450	1, 750	1,650	1, 420	1, 290
,		平均	1,510	1,500	1, 440	1, 470	1, 450	1, 450	1, 400	1, 440	1,570	1,830	1,730	1,540	1, 530
MLVS	C .	最大	1, 300	1, 280	1, 190	1, 290	1, 210	1, 210	1, 190	1, 220	1, 350	1,600	1, 470	1, 330	1,600
(mg/L)	L	最小	1, 110	1,060	1,060	1,070	1,040	1,080	1,040	1,070	1, 140	1, 360	1, 320	1, 120	1, 040
		平均	1, 190	1, 170	1, 130	1, 190	1, 140	1, 160	1, 120	1, 140	1, 250	1, 450	1, 390	1, 220	1, 210
MLVSS/ML	CC	最大	80.7	78. 9	80.6	81.8	80. 3	81. 7	81.6	81. 1	80.7	81.7	82.6	80.8	82. 6
(%)	L	最小	76. 0	77. 1	77. 5	78.8	77. 9	78. 5	77. 3	77. 7	76. 9	78. 0	79. 3	77. 1	76. 0
		平均	78.8	78.0	78. 7	80.6	79. 2	80.0	79. 9	79. 4	79. 5	79. 4	80. 4	79. 4	79. 4
		最大	21	27	34	36	34	36	34	31	35	38	36	36	
		最小	16	18	28	30	30	32	28	25	28	33	32	28	16
S V 3 0	-	平均	18	24	31	34	32	34	31	29	32	35	34	32	
(%)		最大	91	95	98	98	97	98	98	98	97	98	98	98	98
		最小	79	83	88	92	87	94	92	89	88	90	94	92	79
		平均	85	91	95	97	95	97	96	94	94	96	97	96	94
		最大	130	200	230	250	230	260	240	220	220	200	220	230	260
		最小	110	120	200	210	210	220	200	190	180	180	180	190	110
SVI (mL/g)		平均	120	160	220	230	220	240	220	200	200	190	200	200	200
(mL/g)		最大	260	330	360	360	340	310	290	300	270	240	260	310	360
		最小	190	200	240	220	220	230	210	200	220	190	150	200	150
	_	平均	220	240	270	280	280	260	260	250	250	210	210	240	250
BOD-SS		最大	0. 17	0. 14	0. 15	0. 13	0.14	0.16	0.15	0.15	0.18	0.14	0. 17	0.18	0.18
負 荷 (kg/kg・F	_ \	最小	0. 13	0.12	0. 12	0.10	0.11	0.12	0.12	0.13	0.16	0.08	0.12	0.10	0.08
		平均	0.14	0. 13	0. 13	0. 12	0. 12	0.13	0.14	0.14	0.16	0.12	0.14	0. 15	
SRT(Ħ)	平均	8.4	11.5	9.8	9.4	9.8	7.0	7. 3	6.4	7. 7	9. 1	8. 6	7. 1	8.5

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表3-33 反応タンク試験結果(2)

									1		0 '	_	// -/			4 4.00	71 H Z I	• \	<u> </u>										
項	1		4	月	5	月	6	月	7	月	8	月	9	月	1 () 月	1 :	1月	1 2	2月	1	月	2	月	3	月	最大	最小	平均
酸素利用速度	-	-	30.3	20.8	19. 5	22.8	14. 3	19. 2	22.6	18. 0	20.8	30.0	28. 0	25. 0	19. 3	22. 2	16. 5	16. 6	15. 4	16. 4	14.2	25. 0	18.3	23. 9	28. 0	19. 5	30. 3	14. 2	21. 1
Rr (mg/L·H)	A	.TU	23.7	18.6	18. 5	21.8	13.0	14. 2	25. 6	12. 1	16. 7	16. 2	17. 1	17.8	10.7	16. 3	12.8	13. 0	8. 4	13. 7	8.5	19. 2	15.0	19. 4	15. 7	15.8	25. 6	8.4	16.0
酸素利用速度		-	17.9	13. 7	10.9	15. 6	11. 2	12. 5	15. 7	12.0	13. 3	30.0	23. 2	15. 6	13. 2	14. 0	10.2	10. 9	9.6	9. 1	7.4	13. 0	9.1	12. 9	10. 5	11.8	30.0	7.4	13. 5
係数Kr(mg/g・H) A	.TU	14. 1	12. 2	10.3	15.0	10. 2	9. 2	17.8	8. 1	10.6	11. 1	14. 1	11. 1	7.3	10. 2	7. 9	8. 5	5. 2	7.6	4.4	10.0	7.5	10. 5	10.0	9.6	17.8	4. 4	10. 1
備	岑		ΑΤ	」添加	量10n	ıg/L,	酸素和	引用速	度係数	対はM	LSS	によ	る。																

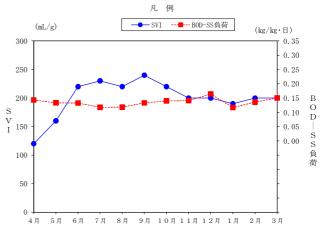
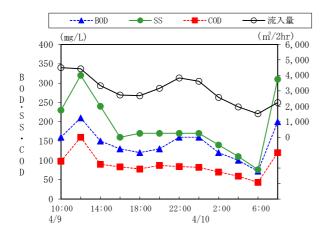


図3-19 反応タンクの管理状況(2)


表3-34 反応タンク生物試験結果

						₹3 — 3				物試験	,,,					(単位:		
	分		生物名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月			平均
	鞭		Bodo•Monas			10		10			10					10	0	3
	虫 類		Peranema			80		40								80	0	10
		原口目	Prorodon				10	30	40		30	20	10			40	0	12
			Spirostomum	90	70	70	340	160	170	250	30	150	390	170	10	390	10	158
		異毛目	Stentor				10			10						10	0	2
		共七日	Blepharisma					10			10					10	0	2
原	繊		Metopus					10						10		10	0	2
	11220		Uronema			10										10	0	1
			Colpidium	160	240	440	180	780	330	330	240	190	650	220	130	780	130	324
			Paramecium				80									80	0	7
			Chilodonella			10								10		10	0	2
	毛		Amphileptus	10	270		50			10	20		10			270	0	31
生		裸口目	Trachelophyllum				130	50	30	30	60	70	60	30	10	130	0	39
			Colepus									20				20	0	2
			Litonotus	270	180	160	20	40	50	250	410	90	100	200	60	410	20	153
		下毛目	Aspidisca	200	260	780	410	970	390	120	750	810	890	720	540	970	120	570
	虫		Vorticella	780	480	70	90	110	110	80	390	910	1,550	1,090	1,270	1,550	70	578
	五		Epistylis	1,280	1, 240		200				270	510	90	1,370	20	1, 370	0	415
動		縁毛目	Carchesium								60				60	60	0	10
			Opercuralia									60			1,220	1, 220	0	107
	類		Vaginicola			70		20	30			50				70	0	14
	炽		Podophrya					10								10	0	1
			Tokophrya								10	20				20	0	3
		虫 目	Acineta	30		10						10		40	10	40	0	8
物			Multifasciculatum	30	20	40	40	20		20			40	80		80	0	24
		キルトホラ目	Trochilia											170		170	0	14
	根		Arcella	210	300	1, 340	630	560	790	2, 330	1,460	1,060	490	40	470	2, 330	40	807
	足	有 殼	Euglypha					10								10	0	1
	虫		torinama								10					10	0	1
	類	無 殻	Amoeba	20	20	30		80			10	10		90		90	0	22
		/// //X	Vahlkampfia												10	10	0	1
包	复	輪虫類	Lepadella	40	30	100	270	180	260	220	120	330	230	270	110	330	30	180
4		,,,,,	Rotaria					10			10					10	0	2
重			Chaetonotus	40	30	60	120	100	70	150	30	40	70		80	150	0	66
华			Diplogaster			10					10			10	10	10	0	3
	\mathcal{O}	他の生		10					20							20	0	3
総		生 物		3, 170	3, 140	3, 290	2, 580	3, 200	2, 290	3,800	3, 940	4, 350	4,580	4, 520	4,010	4, 580	2, 290	3, 573
活		汚 泥 生		2,710	2,700	2, 540	2, 250	2, 190	1,860	3, 190	3, 200	3, 990	3,770	3, 950	3, 790	3, 990	1,860	3,012
活	性	汚 泥 性	生 物(%)	85. 5	86.0	77.2	87.2	68.4	81.2	83. 9	81. 2	91.7	82.3	87.4	94. 5	94. 5	68.4	83.9

表 3-3 5 流入水及び放流水の経時変化(4/9~4/11)

			流入	水			
	流入量	В	OD	S	S	CO)D
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
4/9 10:00	4, 501	160	720	230	1035	98	441
12:00	4, 428	210	930	320	1417	160	708
14:00	3, 335	150	500	240	800	90	300
16:00	2,730	130	355	160	437	83	227
18:00	2,687	120	322	170	457	78	210
20:00	3, 165	130	411	170	538	87	275
22:00	3,833	160	613	170	652	84	322
4/10 0:00	3,619	160	579	170	615	82	297
2:00	2, 576	120	309	140	361	70	180
4:00	1,961	100	196	110	216	59	116
6:00	1,520	72	109	76	116	43	65
8:00	2, 237	200	447	310	693	120	268

			放 流	水			
	放流量	В)D	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
4/10 10:00	2,616	3. 6	9.4	2.0	5. 2	10	26. 2
12:00	2,628	3. 1	8.1	2.8	7.4	10	25.8
14:00	2,872	3. 4	9.8	2.8	8.0	10	27.3
16:00	3,008	4. 0	12.0	3. 2	9. 6	10	30. 1
18:00	2, 583	3.8	9.8	3.3	8.5	10	25.8
20:00	2, 226	3.8	8.5	3. 2	7. 1	11	24. 5
22:00	2,649	3. 1	8.2	2.7	7.2	10	25.7
4/11 0:00	2,615	2.8	7.3	3.0	7.8	10	26. 2
2:00	2, 314	3. 2	7.4	3. 2	7.4	11	25. 5
4:00	1,968	3. 7	7.3	2.0	3.9	10	19.3
6:00	1,876	2.7	5. 1	3. 3	6. 2	10	18. 4
8:00	2, 247	2.8	6.3	2.7	6.1	10	22. 2

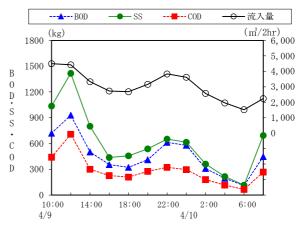
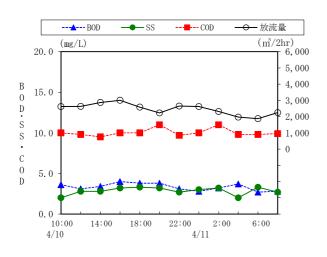
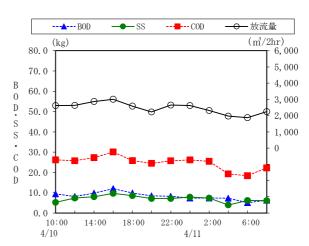



図3-20 流入水濃度の経時変化 (4/9~4/10)

図3-21 流入水負荷量の経時変化 (4/9~4/10)



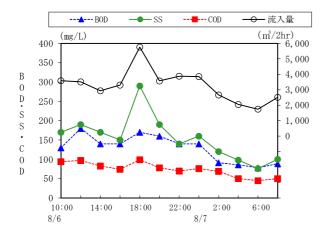
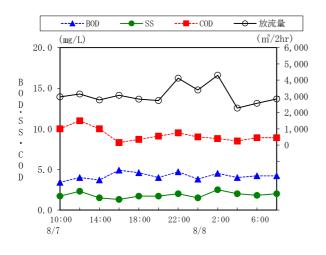

図3-22 放流水濃度の経時変化 (4/10~4/11)

図3-23 放流水負荷量の経時変化 (4/10~4/11)

表 3-36 流入水及び放流水の経時変化(8/6~8/8)

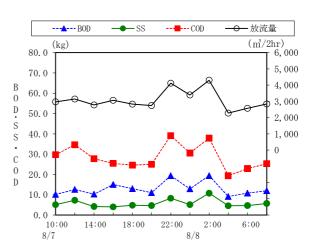
				流入	水			
		流入量	В	OD	S	S	CO	OD O
採水	時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
8/6	10:00	3, 585	130	466	170	609	94	337
	12:00	3, 512	180	632	190	667	97	341
	14:00	2, 938	140	411	170	499	83	244
	16:00	3, 306	140	463	150	496	74	245
	18:00	5, 764	170	980	290	1672	99	571
	20:00	3, 575	160	572	190	679	78	279
	22:00	3,881	140	543	140	543	70	272
8/7	0:00	3, 855	140	540	160	617	76	293
	2:00	2,664	91	242	120	320	69	184
	4:00	2,048	86	176	98	201	50	102
	6:00	1,746	78	136	76	133	45	79
	8:00	2, 513	89	224	100	251	50	126


				放 流	水			
		放流量	Bo	OD	S	S	CO)D
採水	時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
			(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
8/7	10:00	2, 967	3. 4	10.1	1.7	5.0	10	29.7
	12:00	3, 142	4.0	12.6	2. 3	7. 2	11	34.6
	14:00	2,772	3. 7	10.3	1.5	4.2	10	27.7
	16:00	3,064	4.9	15.0	1.3	4.0	8.3	25. 4
	18:00	2,824	4.6	13.0	1.7	4.8	8.7	24.6
	20:00	2,741	4.0	11.0	1.7	4.7	9. 1	24. 9
	22:00	4, 118	4.7	19.4	2.0	8.2	9. 5	39. 1
8/8	0:00	3, 390	3.8	12.9	1.5	5. 1	9.0	30.5
	2:00	4, 301	4. 5	19.4	2. 5	10.8	8.8	37.8
	4:00	2, 274	4.0	9. 1	2.0	4. 5	8. 5	19. 3
	6:00	2, 571	4. 2	10.8	1.8	4.6	8. 9	22. 9
	8:00	2,839	4. 2	11.9	2.0	5. 7	8.9	25. 3

---**△**---- BOD - SS ------ COD (m³/2hr) 6,000 1800 5,000 15004,000 В 0 3,000 1200 D S 2,000 1,000 900 S 0 600 С 0 D 300 10:00 2:00 6:00 14:00 18:00 22:00 8/68/7

図3-24 流入水濃度の経時変化 (8/6~8/7)

図3-25 流入水負荷量の経時変化 (8/6~8/7)



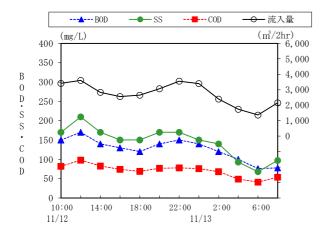

図3-26 放流水濃度の経時変化 (8/7~8/8)

図3-27 放流水負荷量の経時変化 (8/7~8/8)

表 3-3 7 流入水及び放流水の経時変化(11/12~11/14)

			流入	水			
	流入量	В	OD	S	S	CO	OD O
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)
11/12 10:00	3, 415	150	512	170	581	82	280
12:00	3,609	170	614	210	758	98	354
14:00	2,834	140	397	170	482	83	235
16:00	2, 560	130	333	150	384	74	189
18:00	2,647	120	318	150	397	69	183
20:00	3,067	140	429	170	521	77	236
22:00	3, 560	150	534	170	605	78	278
11/13 0:00	3, 404	140	477	150	511	76	259
2:00	2, 394	120	287	140	335	68	163
4:00	1,742	100	174	93	162	49	85
6:00	1,366	76	104	68	93	41	56
8:00	2, 155	78	168	97	209	54	116

			放 流	水			
	放流量	Bo	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
11/13 10:00	2,761	3. 1	8.6	2.2	6. 1	8. 1	22.4
12:00	3,003	4.0	12.0	2.3	6.9	8.7	26. 1
14:00	3,016	3.8	11.5	2.5	7. 5	8.6	25. 9
16:00	2,859	3.8	10.9	2.7	7. 7	8.5	24. 3
18:00	2,410	3.0	7.2	2.3	5. 5	9.4	22.7
20:00	2,675	2.0	5.4	3.0	8.0	9.0	24. 1
22:00	2,655	3. 7	9.8	2.7	7. 2	9.2	24. 4
11/14 0:00	2, 545	3.6	9.2	2.8	7. 1	10	25. 2
2:00	2,696	2.9	7.8	3.2	8.6	10	26. 2
4:00	2,450	2. 9	7. 1	3. 2	7.8	10	23.8
6:00	1,878	2. 9	5.4	3.3	6.2	9.4	17. 7
8:00	1,915	2. 5	4.8	2.7	5. 2	9.1	17.4

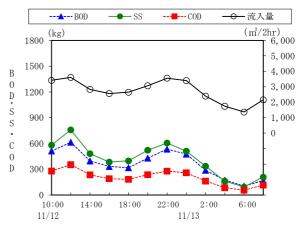
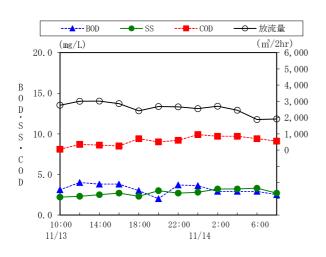
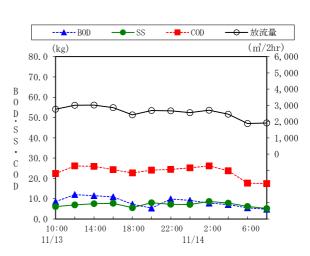



図3-28 流入水濃度の経時変化(11/12~11/13)

図3-29 流入水負荷量の経時変化 (11/12~11/13)



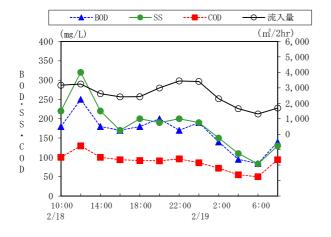

図3-30 放流水濃度の経時変化(11/13~11/14)

図3-31 放流水負荷量の経時変化(11/13~11/14)

表 3-3 8 流入水及び放流水の経時変化(2/18~2/20)

			2/c 1	-1.			
			流入	水			
	流入量	Bo	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
2/18 10:00	3, 166	180	570	220	697	100	317
12:00	3, 242	250	811	320	1037	130	421
14:00	2,621	180	472	220	577	100	262
16:00	2,420	170	411	170	411	94	227
18:00	2, 421	180	436	200	484	92	223
20:00	2, 989	200	598	190	568	91	272
22:00	3, 446	170	586	200	689	96	331
2/19 0:00	3, 416	190	649	190	649	86	294
2:00	2, 292	140	321	150	344	72	165
4:00	1,651	95	157	110	182	55	91
6:00	1,311	84	110	83	109	50	66
8:00	1,694	140	237	130	220	94	159

			放 流	水			
	放流量	Bo)D	S	S	CO	OD
採水時間	(m³/2Hr)	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
2/19 10:00	2,056	4.0	8.2	2.3	4.7	9.3	19. 1
12:00	2,970	3. 9	11.6	3.3	9.8	9.1	27.0
14:00	2,856	3. 7	10.6	3. 2	9. 1	9.0	25. 7
16:00	2, 278	3. 3	7. 5	3. 0	6.8	9. 3	21. 2
18:00	2, 333	3. 2	7.5	2.2	5. 1	9.3	21.7
20:00	2, 240	2. 9	6.5	2.7	6.0	9.4	21. 1
22:00	2, 367	3.0	7. 1	2.8	6.6	9.2	21.8
2/20 0:00	2, 223	2.9	6.4	3.3	7.3	9.4	20.9
2:00	2, 206	2.7	6.0	3.0	6.6	9.4	20.7
4:00	1,890	2. 7	5. 1	3. 2	6.0	9.4	17.8
6:00	1,813	2. 7	4.9	2.5	4. 5	9.4	17.0
8:00	2,007	3. 2	6.4	2.8	5. 6	8.9	17. 9

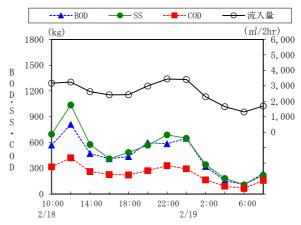
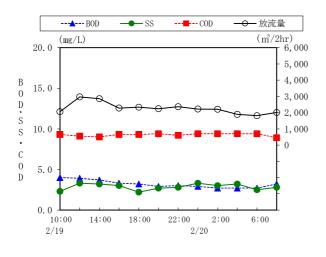



図3-32 流入水濃度の経時変化 (2/18~2/19)

図3-33 流入水負荷量の経時変化 (2/18~2/19)

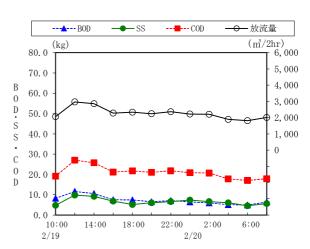


図3-34 放流水濃度の経時変化 (2/19~2/20)

図3-35 放流水負荷量の経時変化 (2/19~2/20)

表 3 - 3 9 汚泥処理運転状況

									衣る	<u> </u>	17	化处理	上生生	1/1 DL						
	項	į	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均	計
生	固	形	分	(%)	1.08	0.54	0.50	0.48	0.46	0.42	0.42	0. 43	0.44	0. 43	0.42	0.41	1.08	0.41	0.50	_
汚	引	抜	量	(m³)	12, 301	25, 462	27, 229	27, 344	28, 567	28, 185	29, 788	28, 740	29,660	29, 682	26, 700	29, 504	29, 788	12, 301	26, 930	323, 162
泥	古	形物	量	(kg)	133, 279	138, 482	136, 122	131, 290	130, 724	118, 766	126, 242	124, 238	129, 524	126, 352	111, 028	122, 125	138, 482	111, 028	127, 348	1, 528, 172
重縮	古	形	分	(%)	2. 41	2. 49	2. 47	2. 27	2. 11	2. 35	2. 35	2. 46	2. 76	2. 88	2.58	2.75	2. 88	2. 11	2.49	_
力汚	引	抜	量	(m³)	4, 837. 5	4, 883. 0	4, 782. 9	5, 066. 2	5, 029. 7	4, 296. 2	4, 367. 4	3, 874. 7	4, 050. 3	3, 835. 5	3, 605. 7	3, 529. 8	5, 066. 2	3, 529. 8	4, 346. 6	52, 158. 9
濃泥	古	形物	量	(kg)	116, 415	121, 723	118, 111	115, 115	106, 319	101, 008	102, 447	95, 416	111, 939	110, 626	93, 033	97, 194	121, 723	93, 033	107, 446	1, 289, 347
余	固	形	分	(%)	0.39	0.40	0.37	0.37	0.39	0.41	0.36	0.40	0.39	0.46	0.46	0.36	0.46	0.36	0.40	
剰汚	引	抜	量	(m³)	18, 022	16, 287	15, 910	16, 992	16, 797	16, 360	15, 661	15, 454	16, 074	13, 796	13, 283	18, 315	18, 315	13, 283	16, 079	192, 951
泥	占	形物	量	(kg)	69, 544	64, 922	59,008	62, 576	66, 289	66, 583	56, 806	61, 278	62, 731	63, 950	61, 395	66, 004	69, 544	56, 806	63, 424	761, 087
機縮	占	形	分	(%)	4. 21	4. 33	3.84	4. 22	3. 91	4. 25	4. 12	4. 14	4.04	4. 02	4.21	4. 15	4. 33	3.84	4. 12	
械汚	引	抜	量	(m³)	1, 515. 1	1, 406. 2	1, 431. 8	1, 364. 6	1, 534. 7	1, 323. 4	1, 269. 3	1, 290. 0	1, 454. 3	1, 486. 7	1, 290. 7	1, 452. 1	1, 534. 7	1, 269. 3	1, 401. 6	16, 818. 9
濃泥	古	形物	量	(kg)	63, 767	60, 904	54, 954	57, 575	60, 031	56, 208	52, 345	53, 346	58, 784	59, 765	54, 320	60, 271	63, 767	52, 345	57, 689	692, 270
高分(濃	1	度	(%)	0. 15	0.15	0. 15	0. 15	0. 15	0. 15	0.15	0. 15	0. 15	0. 15	0.15	0. 15	0. 15	0. 15	0.15	
子濃凝縮	供	給	量	(m³)	122.04	144. 88	153. 69	193. 78	220. 33	192.64	159. 92	199. 54	200. 90	195. 35	186. 34	169.40	220. 33	122.04	178. 23	2, 138. 80
集 ⁾ 剤	薬	主率 (%	6) No.3	濃縮機	0.39	0.45	0. 45	0. 55	0. 64	0.41	0. 33	0. 37	0. 43	0.38	0.40	0.39	0.64	0.33	0.43	_
脱 脱 給	古	形	分	(%)	2. 98	3.05	2.97	2.84	2. 72	2. 94	2.85	3.04	3. 16	3. 36	3. 21	3. 32	3. 36	2.72	3. 04	
脱水機泥	供	給	量	(m³)	6, 045. 3	5, 985. 2	5, 831. 4	6,072.3	6, 122. 2	5, 349. 5	5, 425. 0	4, 889. 7	5, 394. 6	5, 074. 9	4, 592. 7	4, 739. 6	6, 122. 2	4, 592. 7	5, 460. 2	65, 522. 4
機泥	古	形物	量	(kg)	180, 182	182, 627	173, 065	172, 690	166, 350	157, 216	154, 792	148, 762	170, 723	170, 391	147, 353	157, 465	182, 627	147, 353	165, 135	1, 981, 617
高	濃	1	度	(%)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
分へ	供	給	量	(m^3)	701. 27	637.46	571. 10	635. 17	618. 15	593. 18	546.89	541. 18	698. 23	666. 18	558.32	552.74	701. 27	541. 18	609. 99	7, 319. 87
子脱 凝水	薬	主率(%	6) No.1	脱水機	1. 16	1.05	0.99	1. 10	1. 12	1. 13	1.06	1.08	1. 18	1. 16	1.11	1.05	1. 18	0.99	1.10	
集	薬	主率(%	6) No.3	脱水機	1. 25	1. 10	1. 05	1. 14	1. 08	1.01	1. 11	1. 14	1. 24	1. 20	1.21	1.14	1. 25	1.01	1.14	
剤	薬	主率(%	6) No.4	脱水機	_	_	1	_	_	1. 16	_	1.09	1. 30	1. 19	_	1	1. 30	1.09	1. 19	_
脱水	含	水	率	(%)	74. 5	74. 4	73. 9	74. 5	74.0	74. 3	73. 1	73.9	75. 0	74. 9	75. 0	74. 5	75. 0	73. 1	74. 3	_
ホケー)	ケージ	キ量	(t)	652. 12	652.86	612.02	622. 15	585. 27	563. 85	539. 41	549. 73	639. 41	626. 78	576. 20	602. 24	652. 86	539. 41	601.84	7, 222. 04
ーキ	古	形物	量	(kg)	166, 291	167, 132	159, 737	158, 648	152, 170	144, 909	145, 101	143, 480	159, 853	157, 322	144, 050	153, 571	167, 132	143, 480	154, 355	1, 852, 264

表 3 - 4 0 汚泥中試験、汚泥返流水試験分析結果

			表	3 - 4	: O Y	方泥	試験、	イケルに	<u> </u>	武衆ク	丁ツ	木			1		
		項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均
	重	水素イオン濃度	5. 03	5. 17	5. 17	4. 95	5. 14	4. 95	5. 01	5. 21	5. 41	5. 49	5. 61	5. 29	5. 61	4. 95	5. 20
	力汚濃泥	固形分(%)	2. 68	2. 82	2. 90	2. 33	2. 49	2.72	2.87	2.96	3. 05	3. 11	3.02	3. 52	3. 52	2. 33	2.87
	縮	有機分(%)	91.4	89. 4	90. 4	90.4	91. 0	90.7	90. 4	91.8	91.0	91.8	92. 2	92. 2	92. 2	89. 4	91. 1
	機	水素イオン濃度	6. 28	5. 93	5. 95	5.81	5. 87	5. 92	5. 66	5. 90	5. 93	5. 90	6.08	5. 78	6. 28	5. 66	5. 92
汚泥	械汚 濃泥	固形分(%)	4. 48	4. 28	3. 83	4. 25	4.02	4.40	4. 27	4. 12	4. 23	4. 42	4. 60	4.87	4.87	3. 83	4. 31
中	縮	有機分(%)	78.8	78. 2	77.8	79.9	79. 1	79. 9	80.3	78. 7	79. 2	79. 3	79. 9	78. 4	80.3	77.8	79. 1
中試験	脱供	水素イオン濃度	5. 31	5. 29	5. 31	5. 78	5. 24	5.04	5. 46	5. 24	5. 28	5. 68	5. 93	5.09	5. 93	5.04	5. 39
	脱水機供給汚泥	固形分(%)	3. 23	3. 03	3.03	2.85	2. 58	3.05	2.99	3. 11	3. 19	3. 49	3. 44	3. 31	3. 49	2. 58	3. 11
	機泥	有機分(%)	86.7	85.3	85. 9	86. 9	87. 7	86. 7	86.8	86.7	87.2	86.8	87.8	85. 9	87.8	85. 3	86.7
	脱 ケ	含水率 (%)	74. 7	74.8	74.8	74. 7	73. 3	75. 1	74. 1	73. 1	75. 2	73. 9	74. 5	74. 4	75. 2	73. 1	74. 4
	水キ	有機分(%)	91.5	90.5	90. 5	91.5	91.8	91. 2	91. 3	91.3	92. 1	91.8	92. 2	91.8	92. 2	90. 5	91.5
		水素イオン濃度	6.09	6. 41	6. 35	6.30	6. 28	6. 24	6. 33	6. 16	6. 29	6. 53	6. 55	6. 43	6. 55	6.09	6. 33
	重分	アルカリ度 (mg/L)	157	136	141	156	132	152	152	149	142	146	128	139	157	128	144
	重力濃縮	浮遊物質量 (mg/L)	240	160	160	190	180	130	140	140	190	130	130	160	240	130	160
	縮	生物化学的酸素要求量 (mg/L)	470	330	310	360	280	320	310	330	300	260	210	300	470	210	320
		化学的酸素要求量 (mg/L)	160	120	120	120	96	110	100	110	120	110	84	120	160	84	110
汚		水素イオン濃度	7. 16	7. 27	7. 29	7. 01	7. 20	7. 21	7.04	7. 07	7. 02	7. 12	6. 95	7. 19	7. 29	6. 95	7. 13
泥返	機械濃縮	アルカリ度 (mg/L)	380	140	130	130	110	120	110	130	130	130	130	140	380	110	148
返流水試	機離	浮遊物質量 (mg/L)	740	220	190	240	250	380	230	540	900	250	630	470	900	190	420
水試	縮	生物化学的酸素要求量 (mg/L)	380	130	160	230	210	290	290	340	580	210	420	290	580	130	290
験		化学的酸素要求量 (mg/L)	230	77	70	86	68	120	99	140	230	100	180	150	230	68	130
		水素イオン濃度	5. 20	6. 04	5. 41	5. 20	5. 12	5. 18	5. 26	5.04	5. 26	5. 81	5. 45	5. 29	6.04	5. 04	5. 36
	_{ny} 分	アルカリ度 (mg/L)	530	230	290	320	270	310	330	460	270	310	190	320	530	190	319
	脱 脱 水 液	浮遊物質量 (mg/L)	650	300	360	650	500	340	440	790	1, 400	580	450	430	1, 400	300	570
	枚	生物化学的酸素要求量 (mg/L)	2, 200	1,500	1,600	1,000	1,500	1,600	1,500	2,600	1,600	1,500	1, 400	3,000	3,000	1,000	1,800
		化学的酸素要求量 (mg/L)	600	370	420	330	380	450	380	860	1,900	500	420	800	1,900	330	620

表 3 - 4 1 汚泥測定結果(溶出試験)

-F	114 LI.		0.11	F	0. 11	н і	B I	□ 1.⊢
項目	単 位	5月	8月	11月	2月	最 大	最 小	平均
カドミウム又はその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
有機燐化合物	mg/L	_	<0.1	_	<0.1	<0.1	<0.1	<0.1
鉛又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素又はその化合物	${\rm mg}/L$	0.013	0.054	0.013	0.053	0.054	0.013	0.033
水銀又はその化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	${\rm mg}/L$	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
ポリ塩化ビフェニル	mg/L	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
銅又はその化合物	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛又はその化合物	mg/L	0.49	0. 29	0.25	0.29	0.49	0.25	0.33
鉄	${\rm mg}/L$	2. 7	2.3	2.9	0.45	2.9	0.45	2. 1
マンガン	mg/L	<0.10	<0.10	0.13	<0.10	0. 13	<0.10	<0.10
トリクロロエチレン	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
テトラクロロエチレン	${\rm mg}/L$	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	_	<0.02		<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	_	<0.002		<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	_	<0.004		<0.004	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	_	<0.02		<0.02	<0.02	<0.02	<0.02
シス-1, 2-ジクロロエチレン	mg/L	_	<0.04	_	<0.04	<0.04	<0.04	<0.04
1,1,1-トリクロロエタン	mg/L	_	<0.001	-	<0.001	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	_	<0.006		<0.006	<0.006	<0.006	<0.006
1,3-ジクロロプロペン	mg/L	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
チウラム	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
シマジン	mg/L	_	<0.003	_	<0.003	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
ベンゼン	mg/L	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
セレン又はその化合物	mg/L	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
1, 4-ジオキサン	mg/L	_	<0.05	_	<0.05	<0.05	<0.05	<0.05

表 3 - 4 2 汚泥測定結果(含有試験)

項目	単 位	5月	8月	11月	2月	最 大	最 小	平 均
カドミウム	mg/kg	0.41	0.39	0.33	0. 29	0.41	0. 29	0. 36
シアン化合物	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
鉛	mg/kg	6. 9	4.0	3. 5	3. 1	6.9	3. 1	4. 4
六価クロム	mg/kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
ひ素	mg/kg	8. 4	9. 1	9. 5	7. 2	9.5	7. 2	8.6
水銀	mg/kg	0.08	0. 13	0.11	0.10	0. 13	0.08	0. 11
銅	mg/kg	110	120	100	110	120	100	110
ニッケル	mg/kg	10	8.0	8.5	16	16	8.0	11
亜鉛	mg/kg	580	850	650	400	850	400	620
鉄	mg/kg	1, 500	1, 200	1,600	1,400	1,600	1, 200	1,400
マンガン	mg/kg	31	36	41	35	41	31	36
クロム	mg/kg	8. 7	7.9	15	7. 4	15	7. 4	9.8

表 3-43 放流河川調査結果 河川名:笛吹川(採水地点 中道橋[放流口下流約800m])

				χ 0 1	7.7 - 6	1.17.11Mill TET	.,,,,,,	7717Д • Д		にいいい	1 10 11 1		D	٠,			
	項目	単 位	4/11	5/22	6/13	7/3	8/14	9/18	10/16	11/14	12/25	1/22	2/19	3/13	最大	最小	平均
_	採水時刻		9:25	9:45	9:45	9:30	9:45	9:45	9:55	9:40	9:45	9:25	9:35	9:40	-	-	_
	水温	$^{\circ}$	10. 5	17. 5	18. 0	20. 5	25. 0	24. 0	17. 0	14. 5	4. 5	6. 0	4. 0	12. 0	25. 0	4.0	14. 5
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	7. 26	7. 18	7. 37	7. 29	7. 72	7. 58	7. 29	7. 39	7. 22	7. 27	7. 15	7. 24	7. 72	7. 15	7. 33
生	溶存酸素量	mg/L	11	9. 1	9.0	8.7	8. 3	8.6	9. 2	9.8	12	12	12	9. 7	12	8.3	10
活	生物化学的酸素要求量	mg/L	1. 1	1. 3	1. 3	1.1	1. 6	1.7	1. 0	0. 9	1. 4	1. 5	2.0	1.8	2. 0	0.9	1. 4
環	化学的酸素要求量	mg/L	2. 7	3. 0	2. 4	2.6	3. 1	3. 0	2. 3	2. 4	2. 1	2. 4	2.8	3. 9	3. 9	2. 1	2. 7
境	浮遊物質量	mg/L	7. 9	8.8	5.0	5.8	6.8	8.3	3. 3	4. 4	2. 1	2.0	2.6	8. 2	8.8	2.0	5. 4
項	大腸菌群数	個/cm ³	5	6	6	7	13	21	7	21	2	1	0	4	21	0	8
目	窒素含有量	mg/L	1. 70	1.68	1. 39	1. 49	1.47	1. 58	1. 77	1.89	2. 07	2. 52	3. 03	2. 39	3. 03	1. 39	1.92
	燐含有量	mg/L	<0.06	0.08	<0.06	0.09	0.07	<0.06	<0.06	0.10	0.06	0. 07	0. 14	0.09	0. 14	<0.06	<0.06
特	アンモニア性窒素含有量	mg/L	0. 32	0.37	0.46	0. 23	0.41	0. 35	0. 32	0.44	0. 59	0.88	1. 43	0.79	1. 43	0. 23	0.55
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	0.03	<0.02	0.03	0.02	0.05	0.03	0. 03	0.05	0.05	0.05	0. 05	<0.02	0.03
項	硝酸性窒素含有量	mg/L	1. 24	1. 12	0.90	1. 05	0.92	0. 97	1. 18	1. 37	1. 37	1. 40	1. 39	1. 31	1. 40	0. 90	1. 19
目	燐酸イオン態燐含有量	mg/L	<0.05	<0.05	<0.05	0.06	0.05	<0.05	<0.05	0.08	<0.05	<0.05	0. 11	<0.05	0. 11	<0.05	<0.05

表 3 - 4 4 放流河川調査結果 河川名:笛吹川(採水地点 白井河原橋[放流口上流約500m])

	項目	単 位	4/11	5/22	6/13	7/3	8/14	9/18	10/16	11/14	12/25	1/22	2/19	3/13	最大	最小	平均
1	採水時刻		9:15	9:30	9:30	9:20	9:30	9:20	9:35	9:25	9:25	9:10	9:20	9:25	_	-	-
	水温	$^{\circ}$	10.5	17. 0	18.0	20.0	24. 5	23. 5	16. 5	14.0	4.0	5. 5	3.0	11. 0	24. 5	3. 0	14.0
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	7. 22	7. 24	7. 41	7. 35	7.65	7. 54	7. 18	7.50	7. 23	7. 31	7. 17	7.14	7. 65	7. 14	7. 33
生	溶存酸素量	mg/L	11	9. 3	9.3	8. 9	8.5	8.8	9. 2	10	12	12	12	10	12	8. 5	10
活	生物化学的酸素要求量	mg/L	1.0	1. 0	0.9	1.0	1. 3	1.7	0.7	0.8	1.0	1. 3	0.9	1. 3	1.7	0.7	1. 1
環	化学的酸素要求量	mg/L	2.6	3. 0	2. 3	2. 3	2. 9	2. 5	1.9	2. 3	1.6	2. 0	1.9	2. 7	3.0	1.6	2. 3
境	浮遊物質量	mg/L	7.6	9. 0	4.8	5. 9	6. 2	7. 1	3. 2	3. 5	2. 1	1. 9	2.3	7. 0	9.0	1.9	5. 1
項	大腸菌群数	個/cm ³	9	9	7	4	16	17	20	36	4	20	11	5	36	4	13
目	窒素含有量	mg/L	1. 29	1. 29	1.06	1.06	1. 22	1.02	1. 23	1.73	1. 38	1. 21	1. 59	1.54	1. 73	1.02	1.30
	燐含有量	mg/L	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
特	アンモニア性窒素含有量	mg/L	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	0.35	<0.16	<0.16	<0.16	<0.16	0. 35	<0.16	<0.16
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
項	硝酸性窒素含有量	mg/L	1. 03	1. 07	0.89	1.06	1.02	1. 02	1. 23	1.35	1. 38	1. 21	1. 47	1. 28	1. 47	0.89	1. 17
目	燐酸イオン態燐含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

表 3 - 4 5 臭気測定結果

項目	敷地	境界	
採取年月日	令和6年8月20日	令和7年2月21日	規制値
採取時刻	9:43	10:13	
臭気指数	<10	<10	13

IV 釜無川流域下水道

1 整備状況

(1) 全体計画及び現況

釜無川流域下水道は、平成5年4月の供用開始より32年目を迎えている。

全体計画処理水量は 143,380 m²/日、事業計画水量は 128,749 m²/日(水洗化水量は 91,644 m²/日)であり、幹線は 77.0 kmが供用開始となっている。移管予定幹線を除いた管理延長は 76.4km である。

供用開始区域内の面積は 5,659.71ha、人口は 183,615 人となっており、流入下水量は令和 6 年度平均で 53,027 ㎡/日である。

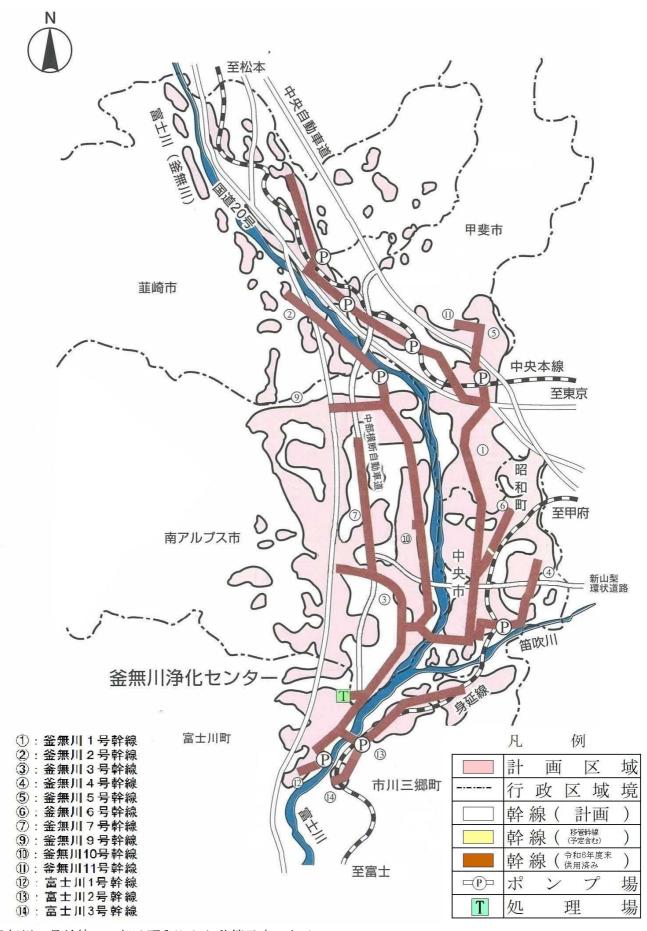

釜無川流域下水道の全体計画及び現況を表 4-1に、釜無川流域下水道事業計画図を図 4-1に、 関連公共下水道市別水洗化状況を表 4-2に、市別流入下水量を表 4-3に示す。

表4-1 全体計画及び現況

項目	全体	計画	事業	計画	供用開	始区域		
	(計画年次:昭和6	31年~令和17年)	(計画年次:昭和	61年~令和6年)				
	計画面積	計画人口	計画面積	計画人口	面積	人口		
市町村名	(ha)	(人)	(ha)	(人)	(ha)	(人)		
韮 崎 市	1, 254. 6	21, 800	1,018.8	19, 700	864. 72	18, 913		
南アルプス市	2, 434. 1	55, 510	1, 830. 9	45, 730	1, 486. 50	43, 340		
甲 斐 市	1, 789. 3	67, 340	1, 583. 7	61, 390	1, 323. 59	60, 066		
中 央 市	852.6	28, 470	694. 6	24, 560	617. 55	22, 047		
市川三郷町	520. 2	9, 810	513. 2	11, 340	427. 17	10, 464		
富士川町	528. 1	10, 030	504. 1	11, 080	426. 67	11, 300		
昭 和 町	659. 2	20, 130	655.5	17, 910	513. 51	17, 485		
合 計	8, 047. 1	213, 090	6, 800. 8	191, 710	5, 659. 71	183, 615		
計画処理水量 (日最大)	143, 380) m³∕∃	128,749 (水洗化水量 9		_	-		
下水排除方式			分流	范 式				
処 理 方 式			標準活性	上汚泥法				
幹線延長	77. (0 km	77. (O km	管理延長 76.4 km			
ポンプ場数	8 筐	5所	8 筐	5所	8 箇 所			

※供用開始区域の面積、人口及び幹線延長は、令和7年4月1日現在の値を示す。

※供用開始区域の幹線延長は、県への管理移管を計画している公共管を含まない。

※釜無川6号幹線の一部は昭和町から移管予定である。

図4-1 釜無川流域下水道事業計画図

表 4-2 関連公共下水道市町別水洗化状況

			令	和 6 年 度	末			
		項目	行政	処理区域	水洗化	普及率	水洗化率	接続戸数
市町名			人口	内人口	人口			
			A (人)	B (人)	C (人)	B/A (%)	C/B (%)	累計 (戸)
韮	崎	市	27, 685	18, 913	17, 805	68. 3	94. 1	8, 114
南ア	ルプ	ス市	71, 670	43, 340	38, 155	60. 5	88.0	13, 549
甲	斐	市	76, 034	60, 066	53, 335	79. 0	88.8	26, 143
中	央	市	30, 459	22, 047	19, 733	72. 4	89. 5	9, 177
市川	三组	耶 町	11, 944	10, 464	9, 070	87.6	86.7	3, 979
富一	士川	町	13, 839	11, 300	10, 480	81. 7	92.7	4, 592
昭	和	町	18, 691	17, 485	16, 751	93. 5	95.8	7, 530
	計		250, 322	183, 615	165, 329	73. 4	90.0	73, 084

- 注1) 行政人口は、令和7年3月31日現在の住民基本台帳の人口を示す。
- 注2) 処理区域内人口は、供用開始区域内人口を表し、令和7年4月1日公示分を含む。
- 注3) 市川三郷町の行政人口については、旧六郷町行政人口分を除いた人口を示す。
- 注4) 昭和町の行政人口については、甲府市公共下水道処理区域分を除いた人口を示す。

表 4 - 3 市町別流入下水量

					表4-	- 3 市	町別流力	人下水量	<u>.</u>				(単位: m	3)
市町名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合 計	月平均
韮崎市	166, 718	178, 287	200, 182	201, 430	213, 305	181, 567	176, 296	167, 534	167, 728	163, 444	148, 500	166, 464	2, 131, 455	177, 621
南アルプス市	347, 941	359, 223	363, 109	377, 777	380, 631	364, 637	372, 280	364, 616	363, 065	350, 137	312, 113	348, 665	4, 304, 194	358, 683
甲斐市	475, 030	492, 399	515, 791	543, 232	539, 811	504, 619	520, 208	496, 647	494, 876	486, 253	424, 716	476, 032	5, 969, 614	497, 468
中央市	184, 594	202, 589	211, 385	217, 859	212, 986	205, 137	210, 118	206, 567	208, 038	198, 623	178, 223	200, 192	2, 436, 311	203, 026
市川三郷町	91, 336	95, 261	102, 965	102, 310	102, 279	94, 223	95, 283	91, 387	90, 195	88, 163	77, 794	89, 314	1, 120, 510	93, 376
富士川町	107, 999	113, 278	117, 653	124, 101	124, 744	114, 434	123, 477	116, 297	111, 359	107, 542	115, 737	112, 059	1, 388, 680	115, 723
昭和町	160, 564	168, 182	169, 376	176, 220	176, 939	167, 285	170, 947	165, 890	167, 724	164, 458	151, 161	165, 263	2, 004, 009	167, 001
合 計	1, 534, 182	1, 609, 219	1, 680, 461	1, 742, 929	1, 750, 695	1, 631, 902	1, 668, 609	1, 608, 938	1, 602, 985	1, 558, 620	1, 408, 244	1, 557, 989	19, 354, 773	1, 612, 898
日平均	51, 139	51, 910	56, 015	56, 224	56, 474	54, 397	53, 826	53, 631	51, 709	50, 278	50, 294	50, 258	年間日平均	53, 027

(2) 施設整備状況

施設整備状況については、令和7年3月までに釜無川浄化センターにおける1系最初沈殿池設備が更新され、供用開始している。

令和6年度末の状況については、以下のとおりである。

①釜無川浄化センター

水処理使用可能池数としては、最初沈殿池 4/7池、反応タンク 8/14池、最終沈殿池 4/7池となっており、処理能力は 74,000 m/日である。

釜無川浄化センターの全体平面図を図4-2に、フローシートを図4-3に、建築構造物概要を表4-4に、水処理機械設備概要を表4-5に、汚泥処理機械設備概要を表4-6に、電気設備概要を表4-7に、単線結線図を図4-4に、システム系統図を図4-5に示す。

図4-2 釜無川浄化センター全体平面図

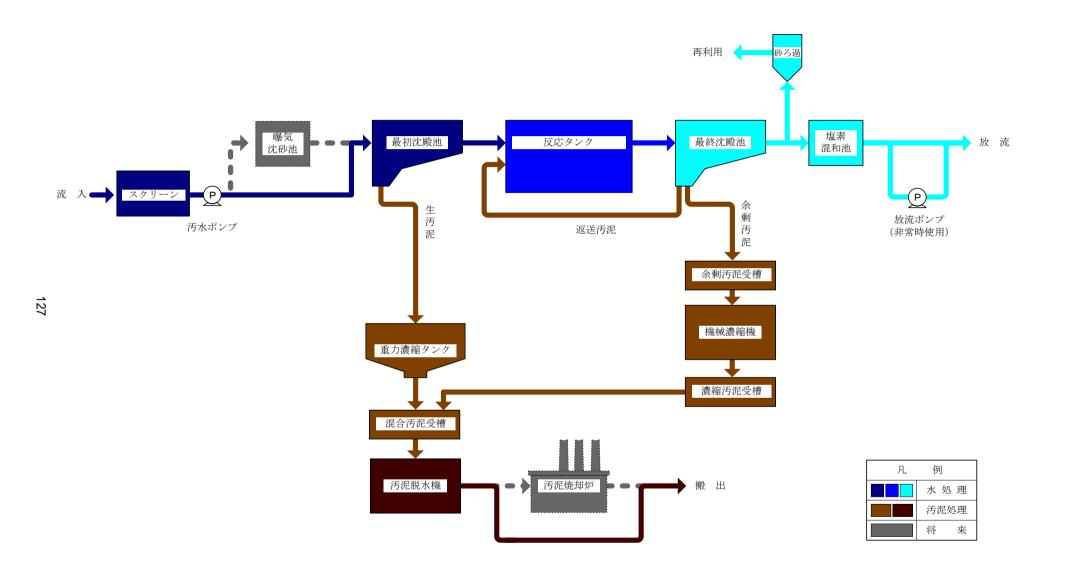


図4-3 釜無川浄化センターフローシート

表4-4 釜無川浄化センター建築構造物概要

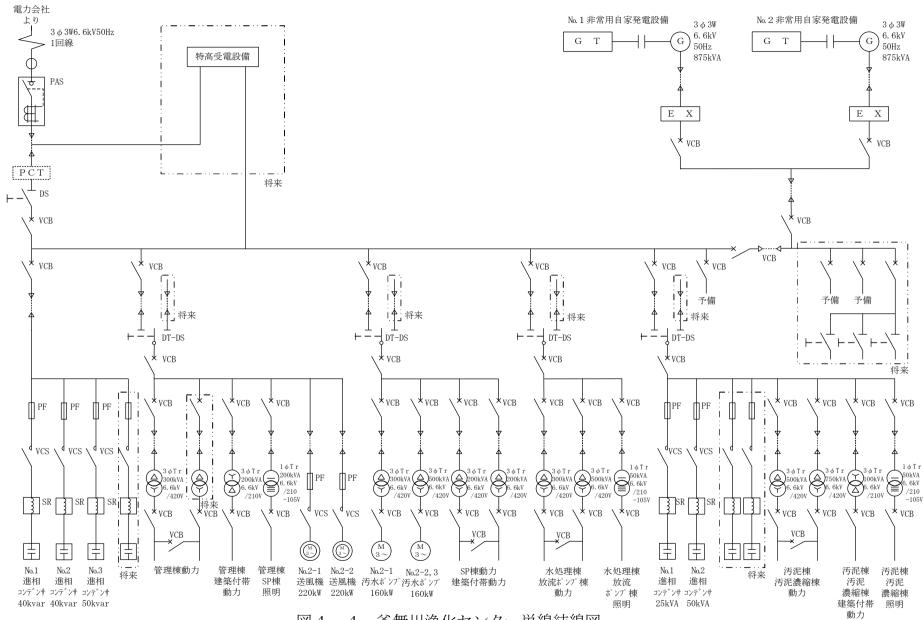
項目 施設	構造及び概要
管理本館	R C造 地下 1 階、地上 3 階 建築面積 2, 184 ㎡ 延床面積 3, 866 ㎡ ブロワー室、自家発電機室、電気室、水質試験室、監視室、事務室、会議室、 その他
スクリーン ポ ン プ 棟	R C造 地下 2 階、地上 2 階 建築面積 914㎡ 延床面積 2,694㎡ スクリーン機械室、ポンプ室、ポンプモーター室、脱臭機室、し渣搬出室、電気室 その他
最初沈殿池電 気 室	RC造 地下1階、地上2階 建築面積 156㎡ 延床面積 285㎡ 電気室、その他
最終沈殿池 搬 入 室	RC造 地下1階、地上1階 建築面積 103㎡ 延床面積 117㎡ 搬入室、その他
最終沈殿池電 気 室	R C造 地下1階、地上1階 建築面積 281㎡ 延床面積 264㎡ 電気室、次亜塩注入室、その他
放流ポンプ棟	R C 造 地下1階、地上1階 建築面積 378㎡ 延床面積 370㎡ ポンプ室、電気室、その他
汚泥濃縮棟	R C 造 地下 1 階、地上 2 階 建築面積 106㎡ 延床面積 263㎡ 脱臭機室、換気ファン室、排気ファン室、ポンプ室、スクリーン室、搬出室、その他
汚 泥 棟	RC造 地下1階、地上2階 建築面積 1,304㎡ 延床面積 3,251㎡ ポンプ室、電気室、薬品注入機室、脱臭機室、濃縮機室、搬出室、監視室、脱水機室、 生物脱臭室、その他

表4-5 釜無川浄化センター水処理機械設備概要

項目		
設備	構造及び能力	現 有 設 備
		O 1-11/2
	幅2m×深約1m×長18.9m(1水路当たり)	2水路
	スクリーン水路流入ゲート(角形外ネジ式鋳鉄製)	2 門
	幅1.2m×高1.2m×3.7kW 水中サンドポンプ(揚砂用)	1 4
	水中リンドホンノ (15645円) φ 100/ φ 80×0. 5 m³/min×15 m×5. 5kW	1 台
		2 基
	福日ハフケーン(予風さ) 幅2m×据付高4m×目幅100mm	
	細目スクリーン	2 基
	水路幅2m×目幅20mm	
	細目スクリーン自動除塵機 (回転アーム式間欠式自動除塵機)	2 基
	福 $2m\times$ 深 $4m\times 1.5kW$	2 坐
	No.1スクリーンかす搬出機 (トラフ形ベルトコンベヤ)	1 台
	幅600mm×長12.3m 輸送量29m³/h×20.5m/min×1.5kW	
	機上用スクリーンかす搬出機(トラフ形ベルトコンベヤ)	1 台
	幅600mm×長4.1m×0.8m 輸送量29m³/h×20.5m/min×1.5kW	
スクリーン	沈砂・し渣混合洗浄装置(横軸型側面攪拌式)	1 基
ポンプ設備	処理能力2㎡/h×槽寸法1.2m×2m×1.5m	
150 0113	初沈スカム分離機(回転ドラム式スクリーン)	1 基
	2.8 m³/min ×1.5kW	
	No.2スクリーンかす搬出機(トラフ形ベルトコンベヤ)	1 台
	幅600mm×長12.9m×2.2m 輸送量29㎡/h×20.5m/min ×1.5kW	
	スクリーンかす脱水機 (スクリュープレス式)	1 基
	$2 \text{ t} / \text{h} \times 7.5 \text{kW} + 0.4 \text{kW}$	
	No.3スクリーンかす搬出機 (ワイヤーロープ式スキップホイスト)	1 基
	0. 2 m³×2. 2k₩	
	スクリーンかすホッパー (角形電動開閉式)	1 基
	容量 7 m³×1.5kW×2	
	ポンプ井水中攪拌機(フリクト水中ミキサー)	2 台
	9 m³/min×2 kW 攪拌能力 100 m³	
	汚水ポンプ (立軸渦巻斜流ポンプ)	
	$\phi 400 \times 21 \mathrm{m}^3 / \mathrm{min} \times 17.5 \mathrm{m} \times 90 \mathrm{kW}$	2 台
	$\phi 600 \times 41 \text{m}^3 / \text{min} \times 16.5 \text{m} \times 160 \text{kW}$	2台(予備1台)
	幅6.8m×長7.5m×深約4.05m 約206.55m ³	1 槽
分水槽設備	分配槽可動堰(鋳鉄製外ネジ式可動堰)	, 88
, , , , , , , , , , , , , , , , , , ,	幅0.8m×高0.8m(ストローク)0.8m	4 門
	幅1.0m×高0.8m (ストローク) 0.8m	1 門
	幅5m×長19m×深3m×4水路 1,140m ³ (1池当たり)	4 池
	初沈汚泥掻寄機(チェーンフライト式(ノッチ式))	4 基
	幅5.0m×機長14.7m×0.61m/min×0.4kW(1水路1駆動)	
	初沈汚泥掻寄機(メイン)(フライト付ダブルチェーンコンベヤ)	9 世
	幅5.0m×2×機長14.65m×0.6m/min×0.75kW(2水路1駆動) 幅5.0m×2×機長14.5m×0.6m/min×0.75kW(2水路1駆動)	2 基 4 基
┃ ┃ 最初沈殿池	幅5.0m×2×機支14.5m×0.6m/m1n×0.75kw (2水路1船期) 初沈汚泥掻寄機(クロス)(フライト付ダブルチェーンコンベヤ)	4
→ 取 初 亿 厥 他 → 設 備	イバルイクル独 音機(クロベ)(クライドハクラル) エージョン・ド) 幅3.7m×機長15.85m×0.6m/min×0.4kW(1水路1駆動)	1 基
IN THE	幅3.7m×機長15.7m×0.6m/min×0.4kw(1 水路 1 駆動)	2 基
	Mas. / Mi ^ 機及15. / Mi ^ U. 6 Mi / Mi Mi / U. 4 Kw (1 水路 1 旅勤) スカムスキマー(電動回転パイプスキマー)	
	φ 300×4, 600mm×0. 2kW (1 水路 1 駆動)	4 基
	φ 300×4, 550mm×0. 2kW (1 水路 1 駆動)	12 基
	生汚泥ポンプ (スクリュー型汚泥ポンプ)	2台(予備1台)
	$\phi 100 \times 1 \text{ m}^3/\text{min} \times 11 \text{m} \times 3.7 \text{kW}$	_ L (
	WIOO. I III/ IIII/O. IKI	l

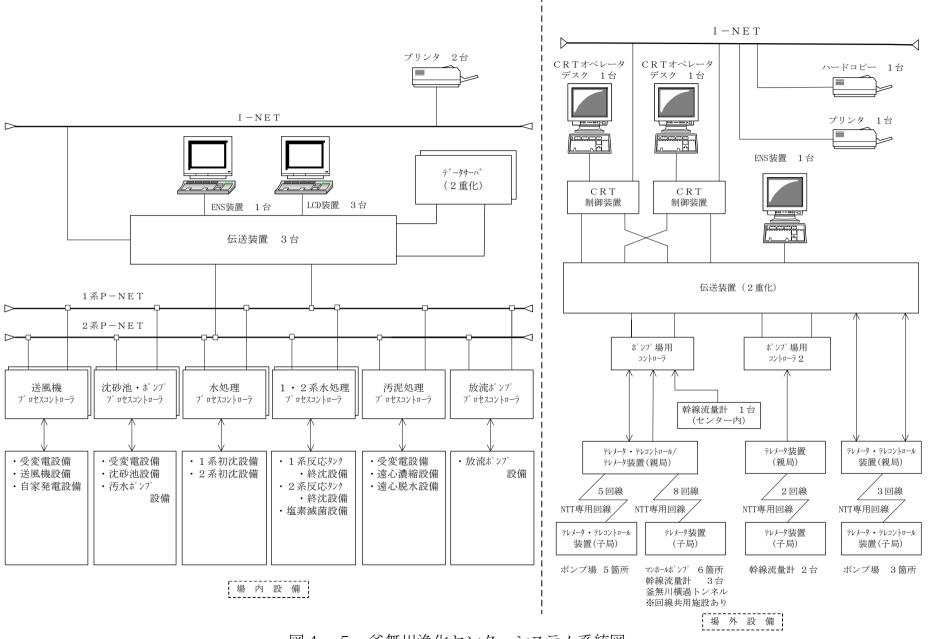
項目 設備	構造及び能力	現有設備
	幅10.3m×長56.7m×深5.5m 3,116㎡ (1池当たり)	8 池
	(ステップエアレーション可)	
	No.1-1反応タンク水中ミキサー(昇降式水中ミキサー)	2 台
	2. 8kW	
	No.1-1反応タンク散気装置	
	全面式散気装置(固定式散気板)	60 枚
	酸素供給量2,370kg O ₂ / 日・池	
	No.1-2反応タンク散気装置	
	水中機械曝気機(軸流オープン型)	2 台
	送風量6.25Nm³/min×5.5kW	
	全面式散気装置(固定式散気板)	360 枚
	散気量30~50L/min/枚	
	No.2-1反応タンク散気装置	
	水中機械曝気機(軸流オープン型)	2 台
反応タンク	送風量6.0N㎡/min×5.5kW	.,
設備	全面式散気装置(固定式散気板)	360 枚
PS VIII	散気量30~50 L /min/枚	
	No.2-2反応タンク散気装置	2 /
	水中機械曝気機(軸流オープン型)	2 台
	送風量6.0Nm³/min×5.5kW	0.00 1/.
	全面式散気装置(固定式散気板)	360 枚
	散気量30~50 L / min / 枚	
	No.3-1~No.4-2反応タンク散気装置	
	水中機械曝気機(軸流オープン型)	1 /2 \ 4 \ 3/4
	送風量4.1S m³/min×5.5kW	1台×4池
	送風量4.0Sm³/min×5.5kW	2台×4池
	全面式散気装置(固定式散気板)	78枚×4池
	酸素供給量56kg O 2 / h・槽	
	消泡水ポンプ(渦巻ポンプ)	0 /2
	$\phi 80 / \phi 65 \times 0.6 \text{m}^3 / \text{min} \times 34 \text{m} \times 7.5 \text{kW}$	2 台 1 台
	φ 125/φ 100×1. 8 m³/min×32 m×18. 5 kW	1 台
	送風機(単段増速ターボブロワ)	0 4
送風機設備	$\phi 250 / \phi 200 \times 69 \text{m}^3 / \text{min} \times 58.7 \text{kPa} \times 110 \text{kW}$	2 台
	$\phi 350 / \phi 300 \times 140 \text{m}^3 / \text{min} \times 63.6 \text{kPa} \times 220 \text{kW}$	1台 (予備1台)
	φ 350/ φ 300×140 m³/min×66.6kPa×220kW	1台 () /// // // // // // // // // // // //

項目		
設備	構造及び能力	現有設備
	幅 5 m×長37m×深3 m×4 水路 2,220m³(1池当たり)	4 池
	終沈汚泥掻寄機(ノッチチェーン式) 	o #
	幅5.0m×機長32.6m×0.3m/min×0.4kW(1水路1駆動) 終沈汚泥掻寄機(メイン)(フライト付ダブルチェーンコンベヤ)	3 基
	幅5.0m×機長32.6m×0.3m/min×0.4kW(1水路1駆動)	1 基
	幅5.0m×2×機長32.2m×0.3m/min×0.75kW (2水路1駆動)	2 基
	幅5.0m×2×機長32.7m×0.3m/min×0.75kW (2水路1駆動)	4 基
	終沈汚泥掻寄機(クロス) (フライト付ダブルチェーンコンベヤ)	. ++
最終沈殿池	幅3.7m×機長15.25m×0.3m/min×0.4kW(1水路1駆動) 幅3.7m×機長15.7m×0.3m/min×0.4kW(1水路1駆動)	1 基 2 基
設 備	幅3.7m ^ 機表13.7m ^ 0.3m / min ^ 0.4kw (1 水路 1 郷朝) スカムスキマー (電動回転パイプスキマー)	
	φ 300×4, 550mm×0. 2kW (1 水路 1 駆動)	16 基
	返送汚泥ポンプ (吸込スクリュー付汚泥ポンプ)	
	$\phi 150 \times 3.3 \mathrm{m^3/min} \times 4 \mathrm{m} \times 5.5 \mathrm{kW}$	2 台
	$\phi 250 \times 6.5 \text{m}^3/\text{min} \times 4 \text{m} \times 7.5 \text{kW}$	3台(予備2台)
	$\phi 250 \times 6.5 \text{ m}^3 / \text{min} \times 4 \text{ m} \times 11 \text{kW}$	4台(予備2台)
	余剰汚泥ポンプ(吸込スクリュー付汚泥ポンプ) φ100×1 m²/min×12m×5.5kW	2 台 (予備 1 台)
	ϕ 100 × 1 m/ m1n × 12m × 5. 5kW ϕ 100 × 1 m ³ /min × 15m × 5. 5kW	4台(予備1台)
	塩素混和池 幅4m×53m×3m 636m³(1池当たり)	1 池
	次亜塩注入ポンプ (一軸偏心ねじマグネットカップリング式ポンプ)	1 台
	ϕ 15×(0.0181~1.77) L/min×0.2MPa×0.4kW	
tt. de »D die	次亜塩注入ポンプ(ダイヤフラム制御定量式)	2台(予備1台)
塩素滅菌	φ 25×(~2.21) L /min×0.5MPa×0.2kW	1 /2
設 備	砂ろ過次亜塩注入ポンプ(一軸偏心ねじマグネットカップリング式ポンプ) ϕ 15×(0.0032 \sim 0.290) L $/$ min×0.2MPa×0.4kW	1 台
	次亜塩貯留タンク	
	容量 3 m ³	1 基
	容量 10㎡	1 基
	給水系圧力給水ユニット(加圧式自動給水ポンプユニット)	1 台
	最大使用量3.0 m³/min×使用圧力0.33~0.45MPa×18.5kW×2	4 /5
	散水系圧力給水ユニット(加圧式自動給水ポンプユニット) 最大使用量1.7㎡/min×使用圧力0.33~0.48MPa×11kW×2	1 台
	乗入使用量1.7m/ min へ使用圧力0.35°0.40mra へ11kw へ 2 井戸ポンプ (深井戸用水中モータポンプ)	1 台
TT 1. =0. /#*	$\phi 125 \times 1.5 \text{m}^3 / \text{min} \times 10 \text{m} \times 5.5 \text{kW}$	1 1
用水設備	砂ろ過水槽	2 槽
	幅6.8m×長7.95m×深 約3.8m 約205㎡(1槽当たり)	
	砂ろ過塔(移床式上向流連続砂ろ過器)	2 塔
	800㎡/日 原水送水ポンプ(片吸込渦巻ポンプ)	3 台 (予備 1 台)
	原水区水がフラ (万坂区間各がフラ) $\phi 80/\phi 65 \times 0.84 \text{ m}^3/\text{min} \times 15 \text{m} \times 3.7 \text{kW}$	
	放流ポンプ (立軸斜流ポンプ)	
	$\phi 400 \times 21 \text{m}^3 / \text{min} \times 4.5 \text{m} \times 30 \text{kW}$	2 台
放 流 設 備	$\phi 600 \times 41 \mathrm{m}^3 / \mathrm{min} \times 4.5 \mathrm{m} \times 45 \mathrm{kW}$	2台(予備1台)
	制水門(鋼板製スライドゲート)	2 門
	幅1.8m×高0.9m	6 /
	スクリーンポンプ棟脱臭ファン(耐蝕ターボファン) φ375×55㎡/min×2.5kPa×5.5kW	2 台
脱臭設備	スクリーンポンプ棟活性炭吸着塔(FRP製上向流式角形吸着塔)	1 塔
	カートリッジ式三層吸着 110㎡/min	, i
T		


表 4 - 6 釜無川浄化センター汚泥処理機械設備概要

項目	構造及び能力	現有設備
設備		
	重力濃縮タンク	2 槽
	φ10m×深 約4m 約314㎡ (1槽当たり) 汚泥掻寄機(円形中央駆動懸垂式)	2 基
	ϕ 10 m×水深 4 m×周速度 2.0 m/min× 0.4 kW	
	汚泥スクリーン(回転ドラム式スクリーン)	1 基
~ 1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$1 \text{ m}^3/\text{min} \times 0.4 \text{kW}$	1 4
重力濃縮設備	スクリーンかす脱水機(スクリュープレス式)	1 基
	処理能力 0.25 t ∕h ×2.2kW+0.4kW	
	スクリーンかすホッパー(電動開閉式鋼鉄製)	1 基
	容量 2.0㎡×0.75kW×2	
	濃縮汚泥移送ポンプ (一軸偏心ねじポンプ)	2台(予備1台)
	$\phi 125 \times 0.4 \text{m}^3 / \text{min} \times 20 \text{m} \times 5.5 \text{kW}$	1 #
	汚泥スクリーン(回転ドラム式スクリーン) 処理能力 120㎡/h×0.75kW	1 基
	スクリーンかす脱水機(スクリュープレス式)	1 基
	処理量0.25 t / h×2.2kW+0.4kW	1 4
	スクリーンかす搬出機(傾斜トラフ形ベルトコンベヤ)	1 基
	幅600mm×長3.3m×0.85m 輸送量36 t/h×20.5m/min×1.5kW	ļ
	遠心濃縮機(横軸連続遠心濃縮機)	3基(予備1基)
	処理能力25㎡/h×45kW/7.5kW	
	濃縮機給泥ポンプ (一軸ネジ式ポンプ)	3台(予備1台)
機械濃縮設備	φ 150×(12.5~37.5) m / h×20m×15kW 濃縮汚泥移送ポンプ (一軸ネジ式ポンプ)	2台(予備1台)
	候相行化を医がファ(一軸ホン氏がファ) $\phi 150 \times 25\text{m}$ $/$ $h \times 10\text{m} \times 5.5\text{kW}$	
	余剰汚泥受槽	1 槽
	幅6m×長5m×深約2.5m 約75m (1槽当たり)	_ TH
	余剰汚泥受槽撹拌機(立軸2段パドル形)	1 基
	5. 5kW	
	濃縮汚泥受槽	3 槽
	幅6m×長5m×深 約2.5m 約75m³(1槽当たり)	0 ##
	濃縮汚泥受槽撹拌機(立軸2段パドル形)	3 基
	φ 5 m×深 約2,135m 約42㎡ (1槽当たり)	1 槽
	幅6m×長8m×深約2.5m 約120m (1槽当たり)	1 槽
	混合汚泥受槽撹拌機(立軸2段パドル形)	
	5.5kW	1 基
脱水設備	11kW	1 基
/1/L /1/ HX //H	汚泥脱水機給泥ポンプ(一軸ネジ式ポンプ)	2台(予備1台)
	$\phi 100 \times (7.5 \sim 22.5) \text{ m}^3 / \text{h} \times 20 \text{m} \times 5.5 \text{kW}$	1 #
	遠心汚泥脱水機(横型遠心脱水機)	1 基
	処理能力15㎡∕h×55kW∕22kW 遠心汚泥脱水機(直胴型遠心脱水機)	1 基
	歴で行れれた後(直刷至速で流水機) 処理能力15㎡∕h×30kW∕7.5kW	1
	70年形月10日/ 日 ^ 30KW/ 1. 3KW	

項目	## `# TA てど 台に も	田 去 凯 供
設備	構造及び能力	現有設備
	No.1 ケーキ搬出機 (水平トラフ形ベルトコンベヤ)	1 台
	幅600mm×長3.0m 輸送量36t/h×1.5kW	
	No.2ケーキ搬出機(水平トラフ形ベルトコンベヤ)	1 台
	幅600mm×長4.3m 輸送量36t/h×1.5kW	
	No.3 ケーキ搬出機 (傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長7.0m×1.1m 輸送量36t/h×1.5kW	
	No.4 ケーキ搬出機(傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長17.5m×3.6m 輸送量36t/h×1.5kW	
	No.5 ケーキ搬出機 (傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長28.1m×5.5m 輸送量38t/h×3.7kW	
	No.6 ケーキ搬出機 (傾斜トラフ形ベルトコンベヤ)	1 台
脱水設備	幅600mm×長3.0m×0.78m 輸送量36t/h×1.5kW	
加 小 议 加	No.7ケーキ搬出機(水平トラフ形ベルトコンベヤ)	1 台
	幅600mm×長4.0m 輸送量36t/h×0.75kW	
	脱水ケーキホッパー(鋼板製角形カットゲート)	2 基
	容量 10 m³	
	薬品定量供給機(容積式定量フィーダー)	2 台
	$1 \sim 4 \text{ L/min} \times 0.4 \text{kW}$	
	薬品溶解タンク(鋼板製立円筒立形)	2 基
	容量 8 m³	
	薬品溶解タンク用撹拌機(立軸2段プロペラ形)	2 台
	3. 7kW	
	薬品供給ポンプ(一軸ネジ式ポンプ)	2台(予備1台)
	$\phi 50 \times 19 \sim 58 \text{L/min} \times 20 \text{m} \times 1.5 \text{kW}$	
	汚泥濃縮棟	
	脱臭ファン(FRP製ターボファン)	1 台
	φ200×20m³/min×3.1kPa×3.7kW	
	生物脱臭塔(FRP製充填式生物脱臭塔)	1 塔
	処理風量 20㎡/min	
	活性炭吸着塔(FRP製上向流式角形吸着塔)	1 塔
脱臭設備	処理風量 20 m³/min	
AL JC ISC VIII	汚泥棟	
	脱臭ファン(FRP製ターボファン)	
	$\phi 300 \times 40 \mathrm{m}^3 / \mathrm{min} \times 2.5 \mathrm{kPa} \times 3.7 \mathrm{kW}$	2 台
	φ 450×80 m³/min×1. 96kPa×5. 5kW	1 台
	活性炭吸着塔(カートリッジ式三層吸着塔)	1 塔
	処理風量 80㎡/min	
	生物脱臭塔(FRP製充填式生物脱臭塔)	1 塔
	処理風量 80㎡/min	
その他設備	トラックスケール(マルチロードセル方式)	1 基
	秤量30t 幅3,000mm×長12,000mm	


表4-7 釜無川浄化センター電気設備概要

設備名称	形 式 及 び 仕 様	現有設備	
受 電 設 備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 4,668kVA 受電遮断器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式	
変 電 設 備	モールド形乾式変圧器 プラント設備用 3 φ 3 W×6,600 V / 420 V×750 kVA 3 φ 3 W×6,600 V / 420 V×500 kVA 3 φ 3 W×6,600 V / 420 V×300 kVA 3 φ 3 W×6,600 V / 420 V×200 kVA 建築付帯動力用 3 φ 3 W×6,600 V / 210 V×200 kVA 3 φ 3 W×6,600 V / 210 V×100 kVA 電灯用 1 φ 3 W×6,600 V / 210 V - 105 V×200 kVA 1 φ 3 W×6,600 V / 210 V - 105 V×50 kVA	1 台 3 台 3 台 2 台 1 台 1 台 1 台 2 台	
高圧進相コンデンサ	3 φ 3 W×6, 600 V×50kvar		
直流電源装置	1式 1式 1式 1式		
非常用発電設備	 汚 泥 棟 150Ah×54セル 長寿命制御弁式据置鉛蓄電池 ガスタービン発電機 772kW(1,050PS) 3 φ 3 W×6,600 V×875kVA 始動用直流電源装置 500Ah×12セル 長寿命制御弁式据置鉛蓄電池 500Ab×12セル 長寿命制御弁式据置鉛蓄電池 	2台 1式 1式	
中央監視設備	500Ah×12セル 長寿命制御弁式据置鉛蓄電池 場内系監視装置 場外系監視装置 プリンタ ハードコピー ENS装置	3台 2台 3台 1台 2台	
遠方監視制御設備	ポンプ場用コントローラ テレメータ・テレコントロール装置(親局) 帯域品目3.4kHz×4線式 保守用電話切替式 テレメータ装置(親局) 帯域品目3.4kHz×2線式 保守用電話切替式 符号品目 50b/s×2線式	2台 6台 8台 3台	
付 帯 設 備	1式 1式 1式 1式 1式 1式 1式		

135

図4-4 釜無川浄化センター単線結線図

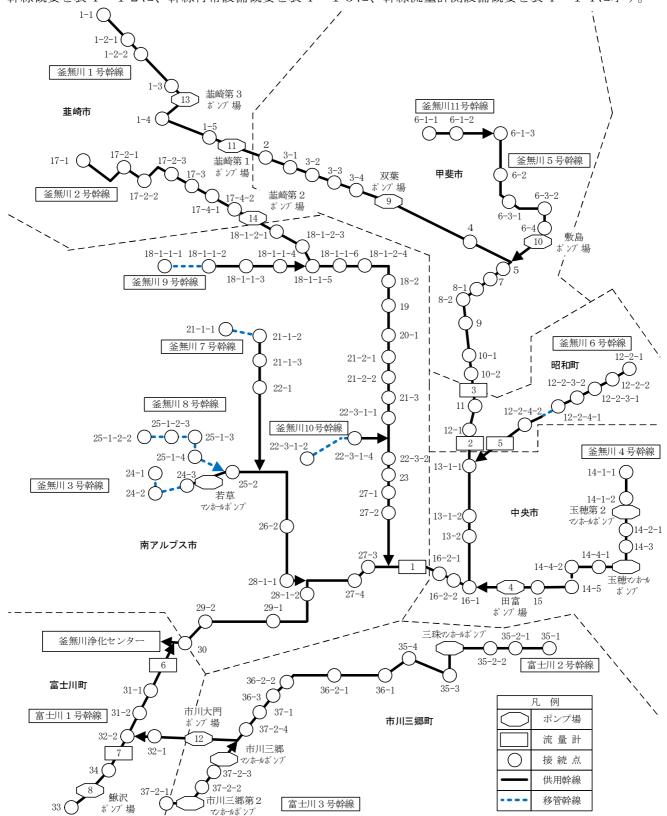

136

図4-5 釜無川浄化センターシステム系統図

②中継ポンプ場・幹線及び幹線流量計

中継ポンプ場は、全体計画 8 箇所全てが整備されており、幹線は、全体計画延長 77.0 km全てが供用開始している。また、中継ポンプ場の流量計を含めた幹線流量計設置数は 14 箇所となっている。

流域幹線系統図を図4-6に、流域関連公共下水道接続概要を表4-8に、中継ポンプ場の建築構造物概要を表4-9に、機械設備概要を表4-10に、電気設備概要を表4-11に、単線結線図を図4-7〜図4-14に、幹線概要を表4-12に、幹線付帯設備概要を表4-13に、幹線流量計測設備概要を表4-14に示す。

※釜無川3号、7号、9号及び10号幹線の一部並びに釜無川8号幹線の全部は南アルプス市に移管済み、 釜無川4号幹線の一部は中央市から移管済み、釜無川6号幹線の一部は昭和町から移管予定である。

図4-6 流域幹線系統図

表 4-8 流域関連公共下水道接続概要

	1		処理区域	処理区域内	
幹線名	処理分区名	供用開始年月日		人,口	接続市町名
	l tota		(ha)	(人)	
	第 1-1	T415 00010	38. 36	1,072	
	第 1-2-1	平成11年 3月31日	48. 79	1,618	
	第 1-2-2		38. 08	801	韮崎市
	第 1-3	T4 05 48 48	82. 95	1, 791	
	第 1-4	平成 8年 4月 1日	229. 80	4, 803	
	第 1-5		73. 72	1, 314	
	第 2 第 3-1	平成 9年 5月 1日	60. 68 27. 31	1, 423 820	
	第 3-2		51. 27	1,645	
	第 3-3	平成 7年10月 1日	51. 54	1, 967	
	第 3-4	平成18年 3月31日	36. 79	684	
	第 4	平成 9年 4月 1日	107. 53		
	第 5	平成14年 3月29日	26. 95	1, 199	甲斐市
	第 7	平成12年 3月31日	40. 52	2, 256	1 2 11
	第 8-1		8. 47	227	
	第 8-2	平成 6年 4月 1日	129.64	5, 117	
父無川1 旦龄始	第 9	平成11年 4月 1日	21. 19	1,007	
釜無川1号幹線	第10-1		228. 39	11, 593	
	第10-2		122. 10	5, 878	
	第11	平成 7年 3月31日	75. 94	1,092	昭和町
	第12-1-1	平成 5年 4月 1日	53. 30	2, 823	FU/1H#1
	第13-1-1	平成25年 6月30日	37. 34	56	
	第13-1-2	平成 5年 4月 1日	140. 45	6, 056	
	第13-2	平成 6年 4月 1日	15. 82	539	中央市
	第16-1	平成 8年 4月 1日	40. 03	1866	, , , , ,
	第16-2-1	平成29年 6月30日	10. 45		
	第16-2-2	平成16年 3月17日	33. 36	1, 225	
	第27-3	平成12年 3月31日 平成11年 4月 1日	26. 80	1, 127	
	第27-4第28-1-2	平成11年 4月 1日 平成26年 4月 1日	24. 03 19. 87	823 405	
	第29-1	平成17年 3月31日	46. 88	1,557	南アルプス市
	第29-2	平成 5年 4月 1日	253. 84	6, 649	
	第30	平成11年 4月 1日	5. 00	29	
	第30	平成 5年 4月 1日	86. 13	2, 100	富士川町
	第17-1	1/4/4 0 1/4 1/1	15. 25	632	ш —/ г ,
	第17-2-1		7. 23		
	第17-2-2	亚出 0 年 9 月 9 1 月	58. 44		
	第17-2-3	平成19年 3月31日	22. 17	418	韮崎市
	第17-3		26.90	903	
	第17-4-1		0. 20	3	
	第17-4-2	平成20年 3月31日	222. 83		
	第18-1-1-5	平成13年 3月31日	10.31	226	
	第18-1-1-6	, , , , , , , , , , , , , , , , , , , ,	2. 20	8	
	第18-1-2-1	平成23年 4月 1日	6. 29	85	
父年川6日払伯	第18-1-2-3	平成14年 9月 1日	37. 00		
釜無川2号幹線	第18-1-2-4	平成13年 3月31日	15. 31	477	
	第18-2	平成10年 4月 1日	13.84	371 1 746	
	第19第20-1	平成12年 6月30日	58. 71 15. 29	1, 746 601	
	第21-2-1	平成12年 6月30日 平成16年 3月31日	36. 41	1, 335	南アルプス市
	第21-2-1	平成15年 3月25日	38. 54		
	第21-3	平成14年 3月31日	23. 82		
	第22-3-1-1	令和 7年 1月20日	11. 10		
	第22-3-2	平成24年 4月 1日	30. 85		
	第23	平成31年 3月31日	11. 29	432	
	第27-1	平成17年 3月31日	10.99	399	
		平成17年 3月31日 平成12年 3月31日	10. 99 4. 23	399	
	第27-1 第27-2 第24-3			300	
釜無川3号幹線	第27-1第27-2	平成12年 3月31日	4. 23	300 5, 407	南アルプス市

14 (5)	() () ()	W == == // / · = = · ·		処理区域内	I to the form of the
幹線名	処理分区名	供用開始年月日		人(八)口	接続市町名
釜無川3号幹線	第28-1-1	平成 8年 8月 1日	(ha) 20. 57	(人) 664	南アルプス市
並無川0万秤隊	第14-1-1	平成16年 9月 1日	42. 06	1, 927	昭和町
	第14-1-1		36. 97	2, 189	нцини.
	第14-1-2	平成10年 4月 1日	17. 48	601	
	第14-2-1	平成16年 3月31日	17. 82	564	
釜無川4号幹線※1	第14-3	平成 9年 4月 1日	15. 68	8	-ff. -l-
	第14-4-1	平成 7年 4月 1日	5. 92	78	中央市
	第14-4-2	平成17年 3月31日	104. 10	3,064	
	第14-5	平成 7年 4月 1日	49. 78	316	
	第15	平成 7年 4月 1日	82.08	4, 568	
	第6-2	平成12年 3月31日	42. 17	2, 234	
釜無川5号幹線	第6-3-1		34. 93	1, 739	甲斐市
玉無川 5 万 轩冰	第6-3-2	平成 7年10月 1日	146. 94	7,864	中文川
	第6-4		8.43	558	
	第12-1-2	平成 5年 4月 1日	8. 70	767	昭和町
	第12-1-2	平成 5年 4月 1日	9. 57	366	中央市
	第12-2-1	平成16年 3月31日	31. 26	1, 554	甲斐市
	第12-2-1	平成10年10月 1日	161. 30	6, 378	
釜無川6号幹線※2	第12-2-2	, , , , , , , , , , , , , , , , , , , ,	23. 82	391	昭和町
	第12-2-3-1	平成16年 9月 1日	35. 06	643	
	第12-2-3-2	平成25年 9月 1日	38. 04	959	m ===
	第12-2-3-1	平成18年 3月31日	15. 34	1, 297	甲斐市
	第12-2-4-1	令和 4年 8月18日 平成 5年 4月 1日	3. 63	20	昭和町
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	平成 5年 4月 1日	71.66	2, 485	
釜無川7号幹線	第21-1-2 第21-1-3	平成10年 4月 1日	124. 13 72. 23	3, 018 2, 002	南アルプス市
並添川りが	第21-1-3	平成22年 4月 1日	1. 30	50	H) / / / / / / / / / / / / / / / / / / /
	第18-1-1-2	平成19年 4月 1日	43. 84	1, 334	
釜無川9号幹線	第18-1-1-3	平成16年 3月31日	39. 94	1, 416	南アルプス市
3E/W/110 13 +1 1/9K	第18-1-1-4	平成14年 9月 1日	17. 04	537	1112 / 2 2 2 1114
釜無川10号幹線	第22-3-1-4	平成26年 4月 1日	36. 60	1. 094	南アルプス市
	第6-1-1	平成19年 3月31日	59. 18	2, 270	
釜無川11号幹線	第6-1-2	平成23年 3月31日	18. 39	1, 129	甲斐市
	第6-1-3	平成19年 3月31日	54.60	2, 404	
	第31-1	平成 5年 4月 1日	44. 50	1, 311	
	第31-2	平成 6年 4月 1日	55. 09	1, 525	
富士川1号幹線	第32-2	平成 8年 4月 1日	146. 93	3, 940	富士川町
	第33	平成 8年 6月 1日	59. 72	1, 330	
	第34	平成 7年 4月 1日	19. 90	803	
	第32-1	平成26年 3月31日	1.80	4	富士川町
	第35-1	平成20年 4月 1日	0.70	3	中央市
	第35-1	平成14年 3月29日	79. 73	936	
	第35-2-1	平成11年11月 1日	15. 50	324	
	第35-2-2 第35-3	平成10年 4月 1日	11. 70	217	
富士川2号幹線	第35-3	平成10年 4月 1日 平成11年 4月 1日	87. 70 0. 91	1, 900 18	
	第36-1	平成 1 年 4 月 1 日 平成 9 年 1 1 月 1 日	11. 18	690	市川三郷町
	第36-2-1	平成13年 3月31日	3. 90	99	1117.11 2245世1
	第36-2-2		65. 10	1,654	
	第36-3	平成 9年11月 1日	72. 81	2, 217	
	第37-1	平成14年 3月31日	35. 46	1, 334	
	第37-2-4	平成13年 3月31日	11. 68	424	
	第37-2-1	平成19年 3月31日	12. 60	287	富士川町
宮上川り 見勘炉	第37-2-1	平成27年 3月31日	1.80	123	
富士川3号幹線	第37-2-2	平成19年 3月31日	20.81	355	市川三郷町
	第37-2-3	平成18年 3月31日	8.82	173	
※ 処理区域内面積	5及び人口は 会和7年	4月1日現在の値を示す。			

[※]処理区域内面積及び人口は、令和7年4月1日現在の値を示す。 ※1 釜無川4号幹線の一部は令和7年4月1日に中央市から移管された。 ※2 釜無川6号幹線の一部は昭和町から移管される予定。

表4-9 中継ポンプ場建築構造物概要

項目	構造及び概要
施設	
	RC造 地下1階、地上2階
韮崎第1	建築面積 189 m ²
ポンプ場	延床面積 657㎡
	沈砂池機械室、自家発電機室、脱臭機室、ゲート室、電気室、換気機械室、その他
	RC造 地下1階、地上1階
韮崎第2	建築面積 250 m²
ポンプ場	延床面積 363 m²
	沈砂機械室、自家発電機室、脱臭機室、電気室、換気機械室、その他
	RC造 地下1階、地上1階
韮崎第3	建築面積 187 m²
ポンプ場	延床面積 458 m²
	スクリーン室、自家発電機室、脱臭機室、ゲート室、電気室、その他
	RC造 地下1階、地上2階
双 葉	建築面積 362 m²
ポンプ場	延床面積 673㎡
	ポンプ室、自家発電機室、スクリーン室、換気ファン室、電気室、その他
	RC造 地下1階、地上1階
敷島	建築面積 314 m ²
ポンプ場	延床面積 507 m ²
	ポンプ室、スクリーン室、電気室、自家発電機室、換気ファン室、その他
	RC造 地下2階、地上1階
自田 富	建築面積 336 m ²
ポンプ場	延床面積 714㎡
	沈砂池機械室、自家発電機室、ゲート室、電気室、換気機械室、その他
	RC造 地下2階、地上2階
市川大門	建築面積 327 m ²
ポンプ場	延床面積 1,190㎡
	ポンプ室、沈砂池機械室、自家発電機室、ゲート室、電気室、脱臭換気機械室、
	換気機械室、その他

表4-10 中継ポンプ場機械設備概要

項目		
施設	構造及び能力	現有設備
	流入ゲート(角形外ねじ式)	2 門
	$0.4 \mathrm{m} \times 0.6 \mathrm{m} \times 0.75 \mathrm{kW}$	
	細目スクリーン自動除塵機(裏がき連続式)	1 基
	幅1m×深2.5m×目幅20mm×3m/min×0.4kW	
	し渣搬出機(トラフ形ベルトコンベヤ)	1 基
	幅500mm×長7m 輸送量20m/min×1.5kW	1 #r
	し渣脱水機(スクリュープレス式) 処理能力 0.25 t / h × 2.2kW + 0.4kW	1 基
		1 台
	$\phi 80 \times 0.8 \text{m}^3 / \text{min} \times 19 \text{m} \times 7.5 \text{kW}$	1 1
II. II. tota	沈砂分離機(円筒式満流形)	1 基
韮崎第1	処理能力 0.8㎡/min	
ポンプ場	汚水ポンプ (吸込スクリュー付水中汚水ポンプ)	
	$\phi 200 \times 3.9 \mathrm{m}^3/\mathrm{min} \times 14.5 \mathrm{m} \times 22 \mathrm{kW}$	2 台
	$\phi 250 \times 6.6 \mathrm{m}^3 / \mathrm{min} \times 14.5 \mathrm{m} \times 30 \mathrm{kW}$	1台(予備1台)
	排泥ポンプ (吸込スクリュー付水中汚水ポンプ)	1 台
	$\phi 80 \times 0.5 \text{m}^3 / \text{min} \times 12 \text{m} \times 3.7 \text{kW}$	
	脱臭ファン(FRP製ターボファン)	1 台
	φ 210×23 m³/min×2. 0kPa×2. 2kW	- I++
	活性炭吸着塔(立型活性炭吸着塔) 処理風量 23㎡/min	1 塔
	水中撹拌機(水中プロペラ式撹拌機)	2 台
	2. 0kW	2 µ
	流入ゲート(外ねじ式)	2 門
	$0.4 \mathrm{m} \times 0.6 \mathrm{m} \times 0.75 \mathrm{kW}$	
	スクリーン	
	幅0.8m×深2.4m×目幅100mm	1 基
	幅0.8m×深2.6m×目幅40mm	1 基
	しさ破砕機(回転スクリーン付2軸差動回転型破砕機)	1 基
	破砕容量10.5 m³/min×2.2kW+0.4kW	
ポンプ場	汚水ポンプ(吸込スクリュー付水中汚水ポンプ)	0.75
	$\phi 200 \times 4.5 \text{m}^3 / \text{min} \times 23 \text{m} \times 37 \text{kW}$	2 台
	φ 200×5. 3 m³/min×24. 5 m×45 kW 脱臭ファン (耐食性片吸込ターボファン)	1 台 (予備1台) 1 台
	が 及 2 2 5 × 1 1 m ³ / min × 2 . 16 kPa × 1 . 5 kW	
	活性炭吸着塔(立型カートリッジ式)	1 塔
	処理風量 11 m³/min	
	流入ゲート(外ねじ式)	2 門
	$0.6 \mathrm{m} \times 0.6 \mathrm{m} \times 0.75 \mathrm{kW}$	
	粗目スクリーン	2 基
韮崎第3	幅0.9m×深2m×目幅100mm	
ポンプ場	破砕機(立形二軸差動回転式)	1 基
	破砕容量3.2m ³ /min×3.7kW	. ,
	汚水ポンプ(吸込スクリュー付水中汚水ポンプ)	2台(予備1台)
	$\phi 200 \times 3.2 \mathrm{m}^3 / \mathrm{min} \times 9.0 \mathrm{m} \times 11 \mathrm{kW}$	

項目 施設	構造及び能力	現有設備
//世 [汉	脱臭ファン(FRP製ターボファン)	1 台
	$\phi 225 \times 12 \mathrm{m}^3 / \mathrm{min} \times 2.06 \mathrm{kPa} \times 1.5 \mathrm{kW}$	1
韮崎第3	活性炭吸着塔(立型カートリッジ式)	1 塔
ポンプ場	処理風量 12㎡/min	
	水中撹拌機(水中プロペラ式撹拌機)	1 台
	0.9kW	- 88
	流入ゲート(角形外ねじ式)	2 門
	0.4m×0.4m 細目スクリーン除塵機(間欠式)	1 基
	幅1.5m×深4.5m×目幅30mm×1.5kW	1
	スクリーンかす搬出機(トラフ形ベルトコンベヤ)	1 基
	幅500mm×長7m 輸送量20m/min×0.75kW	
	揚砂ポンプ (水中ポンプ)	1 台
	$\phi 80 \times 0.5 \mathrm{m}^3 / \mathrm{min} \times 20 \mathrm{m} \times 3.7 \mathrm{kW}$	
	沈砂分離機 (円筒式満流形)	1 基
	処理能力 0.5㎡/min	
	スクリーンかす脱水機(スクリュープレス式)	1 基
ポンプ場	処理能力 0.3 m / h × 2.2 kW 汚水ポンプ (横軸吸込スクリュー付汚水ポンプ)	
	φ 250/ φ 150×5. 5 m³/min×62 m×132kW	2 台
	$\phi 300/\phi 250 \times 10 \text{m}^3/\text{min} \times 62 \text{m} \times 190 \text{kW}$	1台(予備1台)
	脱臭ファン (FRP製ターボファン)	1 台
	$\phi 300 \times 22 \mathrm{m}^3 / \mathrm{min} \times 2.0 \mathrm{kPa} \times 2.2 \mathrm{kW}$	
	活性炭吸着塔 (立型カートリッジ式)	1 塔
	処理風量 22 m³/min	
	水中撹拌機(水中プロペラ式撹拌機)	,
	2. 0kW	1 台
	1.5kW 	1 台
	流入ゲート (角形外ねじ式) 0.4m×0.6m×0.75kW	2 門
	細目スクリーン除塵機(間欠式)	1 基
	幅 1 m×深2. 2m×目幅30mm×1. 5kW	1 2
	スクリーンかす搬出機(トラフ形ベルトコンベヤ)	1 基
	幅500mm×長8.1m×1.5m 輸送量20.5m/min×1.5kW	
	揚砂ポンプ (水中サンドポンプ)	1 台
敷島	$\phi 80 \times 0.5 \text{m}^3 / \text{min} \times 10 \text{m} \times 3.7 \text{kW}$	
ポンプ場	沈砂・スクリーンかす洗浄機 (機械撹拌式)	1 基
·	処理能力 0.5 m³/h×3.7kW+0.75kW×2	1 #*
	スクリーンかす脱水機 (スクリュープレス式) 処理能力 0.3 m²/h×2.2kW	1 基
	元母能力 0.3 m/ 11 ^ 2.2 kw	
	$\phi 200 \times 3.3 \text{m}^3 / \text{min} \times 15 \text{kW}$	2 台
	$\phi 250 \times 6.0 \mathrm{m}^3 / \mathrm{min} \times 11 \mathrm{m} \times 18.5 \mathrm{kW}$	1台(予備1台)
	脱臭ファン(FRP製ターボファン)	1 台
	φ300×24m³/min×2.0kPa×2.2kW	

項目	構造及び能力	現有設備
施設		
	活性炭吸着塔(横型カートリッジ式)	1 塔
敷 島	処理風量 24㎡/min 水中撹拌機(水中プロペラ式撹拌機)	
ポンプ場	小牛!見:什傚 (小牛ノロ・ヘノ X)見:什傚	1 台
	2. 0kW	1 台
	流入ゲート(外ねじ式)	2 門
	$0.5 \mathrm{m} \times 0.5 \mathrm{m} \times 0.75 \mathrm{kW}$, ,
	粗目スクリーン	2 基
	幅1m×深1.7m×目幅75mm	
	自動除塵機(脱水機構付ドラム状自動スクリーン)	1 基
	外径φ0.78m×長6.2m×目幅25mm×1.5kW	
	揚砂ポンプ(水中サンドポンプ)	1 台
	$\phi 80 \times 0.5 \text{ m}^3 / \text{min} \times 15 \text{ m} \times 5.5 \text{ kW}$	1 /2
· ·	洗砂分離機(円筒式満流形) 処理能力 0.5 m³/min	1 台
		2 台
	$\phi 200 \times 4.3 \text{m}^3 / \text{min} \times 18 \text{m} \times 30 \text{kW}$	2 H
	汚水ポンプ (水中汚水ポンプ)	 1台(予備1台)
	φ 250×6. 3 m³/min×30 m×55kW	
	脱臭ファン(FRP製ターボファン)	1 台
	$\phi 200 \times 16 \mathrm{m}^3 / \mathrm{min} \times 1.96 \mathrm{kPa} \times 2.2 \mathrm{kW}$	
	活性炭吸着塔(立型カートリッジ式)	1 塔
	処理風量 16m³/min	() () () () () ()
The state of the s	汚水ポンプ (水中汚水スクリュー渦巻ポンプ)	2台(予備1台)
ポンプ場	$\phi 150 \times 2.4 \text{ m}^3/\text{min} \times 23 \text{m} \times 22 \text{kW}$	O HH
	流入ゲート (外ねじ式) 0.5m×0.75m×0.4kW	2 門
	一切の	1 基
	幅 1 m×深2. 3m×目幅20mm×1. 5kW	1 25
	スクリーンかす搬出機(トラフ形ベルトコンベヤ)	1 基
	幅500mm×長8.3m 輸送量20.5m/min×1.5kW	
	揚砂ポンプ (水中サンドポンプ)	1 台
	$\phi 80 \times 0.5 \mathrm{m}^3 / \mathrm{min} \times 8 \mathrm{m} \times 2.2 \mathrm{kW}$	
	沈砂・スクリーンかす洗浄機(機械撹拌式)	1 基
市川大門	処理能力 1 m³/h ×2. 2kW+1. 5kW+0. 75kW	
ポンプ場	スクリーンかす脱水機 (スクリュープレス式)	1 基
	処理能力 1 m²/h×5.5kW+0.4kW汚水ポンプ (横軸吸込スクリュー付汚水ポンプ)	9 4 (3 借 1 4)
	存水ホンノ (慎軸吸込スクリューヤ 存水ホンノ) $\phi 250/\phi 200 \times 6.2 \text{m}^3/\text{min} \times 29 \text{m} \times 75 \text{kW}$	2台(予備1台)
	ψ250/ ψ200	1 台
	$\phi 300 \times 25 \text{m}^3 / \text{min} \times 2.0 \text{kPa} \times 3.7 \text{kW}$	
	活性炭吸着塔(立型カートリッジ式)	1 塔
	処理風量 25 m³/min	
	水中撹拌機(水中プロペラ式撹拌機)	1 台
	1. 2kW	

表4-11 中継ポンプ場電気設備概要

ポンプ場名称	設備名称	形式及び仕様	現有設備
	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 200kVA 受電 遮 断 器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V × 200kVA	1 台
	低 圧 進 相 コンデンサ	$3 \phi 3 W \times 420 V \times 10 \text{kVA}$ $3 \phi 3 W \times 420 V \times 15 \text{kVA}$	1台 1台
i	直流電源装置	50Ah×9セル 長寿命制御弁式据置鉛蓄電池	1式
	非常用	ディーゼル発電機 179kW(243PS) 3 φ 3 W×420 V×200kVA	1台
	発電設備	始動用直流電源装置 200Ah×12セル 長寿命制御弁式据置鉛蓄電池	1式
	遠方監視制御設備	テレメータ・テレコントロール装置(子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備	1式 1式
		防犯設備 受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線	1式
	受電設備	受電設備容量 300kVA 受電遮断器 VCB 定格電圧 7,200V 定格電流 600A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 210 V × 300 kVA	1台
	低圧進相 コンデンサ	$3 \phi 3W \times 210V \times 10$ kvar	1 台
韮 崎 第 2 ポンプ場	交流無停電電源 装置	₹=UPS 2kVA	1 台
	非常用	ディーゼル発電機 221kW(301PS) 3 φ 3 W×210 V×200kVA	1台
		始動用直流電源装置 150Ah×12セル 長寿命制御弁式据置鉛蓄電池	1式
	遠方監視 制御設備	テレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
		インターホン設備 自動火災警報設備 防犯設備	1式 1式 1式

ポンプ場名称	設備名称	形 式 及 び 仕 様	現有設備
	受電設備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 100kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 210 V × 100 kVA	1台
	低圧進相 コンデンサ	$3 \phi 3W \times 210V \times 5 \text{kvar}$	2台
韮崎第3 ポンプ場	直流電源装置	50Ah×54セル 長寿命制御弁式据置鉛蓄電池	1式
		ディーゼル発電機 107kW(145PS) 3 φ 3 W×210 V×100kVA 始動用直流電源装置	1台 1式
		150Ah×12セル 長寿命制御弁式据置鉛蓄電池 テレメータ・テレコントロール装置 (子局)	1台
	制御設備	帯域品目3.4kHz×4線式 保守用電話切替式 インターホン設備	1式
	付帯設備	自動火災警報設備 防犯設備	1式 1式
	受電設備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 723kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V×500kVA	1台
	低圧進相コンデンサ	$3 \phi 3 W \times 420 V \times 20$ kVA	1台
双 ポンプ場	直流電源装置	50Ah×54セル 長寿命制御弁式据置鉛蓄電池	1式
	非常用	ガスタービン発電機 662kW(900PS) 3 φ 3 W×6, 600 V×750kVA	1台
	発電設備	始動用直流電源装置 300Ah×24セル 長寿命制御弁式据置鉛蓄電池	1式
	遠方監視制御設備	テレメータ・テレコントロール装置(子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備 防犯設備	1式 1式 1式

ポンプ場名称	設備名称	形 式 及 び 仕 様	現有設備
	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 200kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6,600 V / 420 V×200kVA	1台
	低圧進相コンデンサ	$3 \phi 3 W \times 420 V \times 10 \text{kVA}$	2台
敷	直流電源装置	50Ah×9セル 長寿命制御弁式据置鉛蓄電池	1式
		ディーゼル発電機	1台
	非 常 用 発電設備	136kW(185PS) 3 φ 3 W×420 V×150kVA 始動用直流電源装置 150Ah×12セル 長寿命制御弁式据置鉛蓄電池	1式
	遠方監視制御設備	テレメータ・テレコントロール装置(子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備 防犯設備	1式 1式 1式
	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 200kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 210 V × 200 kVA	1台
		$3 \phi 3 W \times 210 V \times 5 \text{ kvar}$ $3 \phi 3 W \times 210 V \times 10 \text{ kvar}$	2台
田 富 ポンプ場		50Ah×54セル シール形据置鉛蓄電池	1式
	非常用	ディーゼル発電機 154kW(210PS) 3 φ 3 W×210 V×150kVA	1台
	発電設備	始動用直流電源装置 150Ah×12セル シール形据置鉛蓄電池	1式
	遠方監視 制御設備	テレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備 防犯設備	1式 1式 1式

ポンプ場名称	設備名称	形式及び仕様	現有設備
	受電設備	受 電 方 式 3 φ 3 W×200 V / 50Hz×1 回線(動力) 契 約 電 力 47kW 受電遮断器 MCCB 225AF/200AT	1式
鮲 沢 ポンプ場		受 電 方 式 1 φ 2 W×100 V / 50Hz×1回線(電灯) 契 約 電 流 15 A 受電遮断器 MCCB 50AF/30AT	1式
	交流無停電電源 装置	₹=UPS 1kVA	1台
		テレメータ装置(子局) 帯域品目3.4kHz×2線式 保守用電話切替式	1台
	受電設備	受 電 方 式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 500kVA 受電 遮 断 器 V C B 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V × 500kVA	1台
市川大門ポンプ場	低 圧 進 相 コンデンサ 直 流	3 φ 3 W×420 V×5 kVA 3 φ 3 W×420 V×10kVA 3 φ 3 W×420 V×15kVA 50Ah×54セル 長寿命制御弁式据置鉛蓄電池	1台 1台 1台 1式
	電源装置	ガスタービン発電機	1台
		449kW(610PS) 3 φ 3 W×420 V×500kVA 始動用直流電源装置 400Ah×12セル 長寿命制御弁式据置鉛蓄電池	1式
	遠方監視 制御設備	サレメータ・テレコントロール装置 (子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1台
	付帯設備	インターホン設備 自動火災警報設備 防犯設備	1式 1式 1式

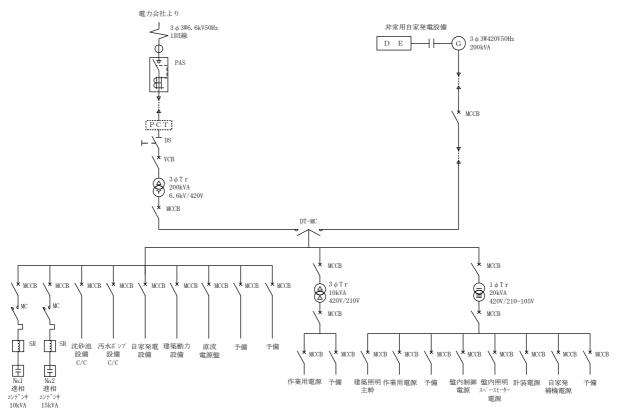


図4-7 韮崎第1ポンプ場単線結線図

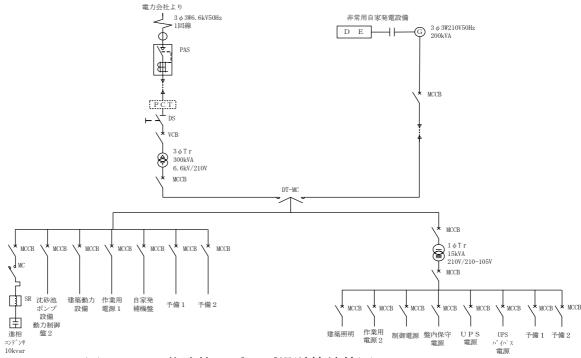


図4-8 韮崎第2ポンプ場単線結線図

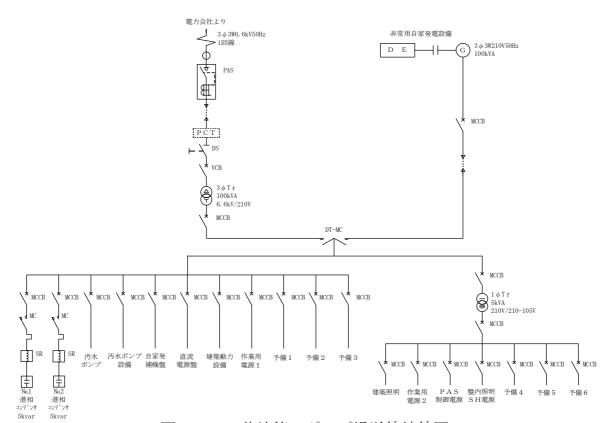
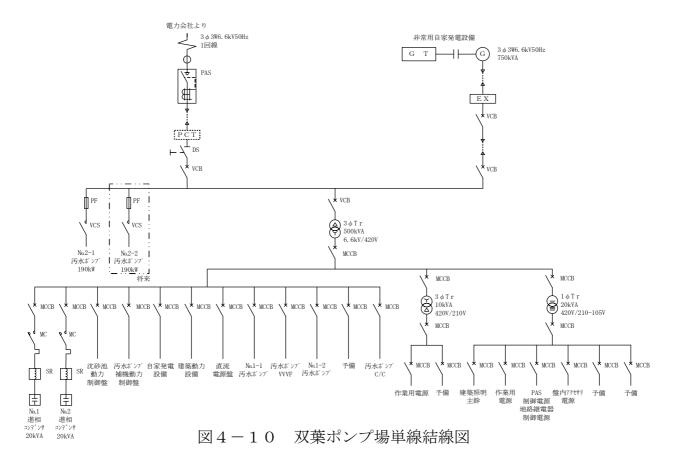



図4-9 韮崎第3ポンプ場単線結線図

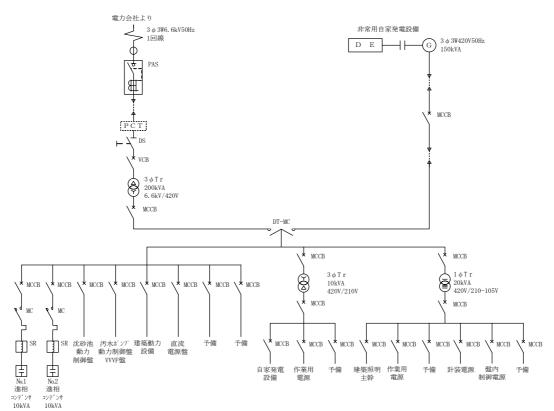


図4-11 敷島ポンプ場単線結線図

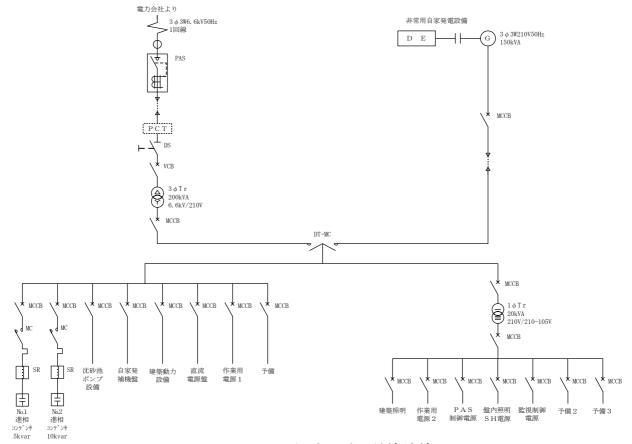


図4-12 田富ポンプ場単線結線図

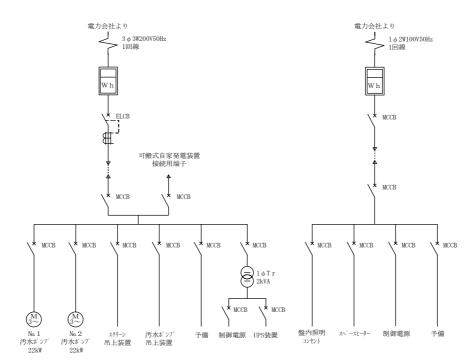


図4-13 鰍沢ポンプ場単線結線図

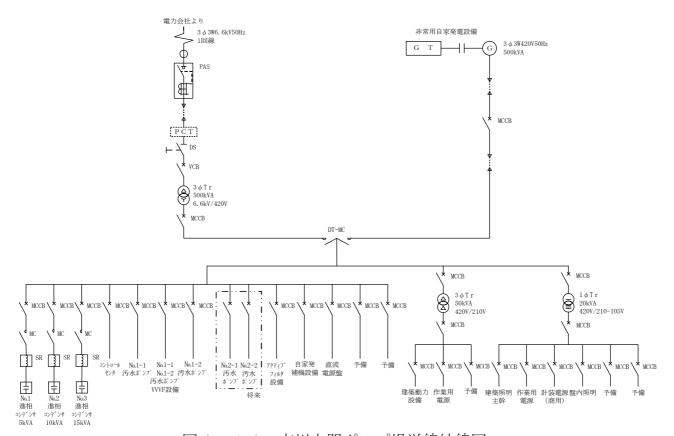


図4-14 市川大門ポンプ場単線結線図

表4-12 幹線概要

北 人 《白 <i>左</i>	供	用
幹線名	管径 (mm)	延長 (m)
釜無川1号幹線	$300 \times 2 \sim 2,000$	27, 480
釜無川2号幹線	300×2 ∼ 1,010	15, 795
釜無川3号幹線	200 ~ 900	3, 964
釜無川4号幹線	$250 \sim 1,000$	4,710
釜無川 5 号幹線	300×2 ∼ 800	3, 127
釜無川 6 号幹線	600 ~ 1, 200	2, 403
釜無川7号幹線	$350 \sim 400$	3, 531
釜無川9号幹線	400	1, 965
釜無川10号幹線	500	80
釜無川11号幹線	1,000	476
富士川1号幹線	200 ~ 1,200	4,004
富士川2号幹線	$200 \sim 1,350$	6, 634
富士川 3 号幹線	150 ~ 250	2, 200
合 計		76, 369

[※]供用管径及び延長は、令和7年4月1日現在の値を示す。

[※]供用延長は、県へ管理移管を計画している公共管を含まない。

表 4-13 幹線付帯設備概要

幹線名	設 備 名 称	仕様及び形式	現有設備
	黒沢川横断部水管橋	管径350mm	9.000m
釜無川1号幹線	釜無川横過トンネル	一級河川富士川横断部 管径800mm×2条 照明設備 換気設備 ガス検知器設備 排水ポンプ設備 制水ゲート 富士川 右岸 幅1.65m×高1.65m 左岸 幅1.65m×高1.65m	656.853m 1式 1式 1式 1式 2門 2門
	坪川制水ゲート設備	一級河川坪川横断部 坪川 右岸 幅1.8m×高1.8m 左岸 幅1.8m×高1.8m	1 門 1 門
釜無川3号幹線	若草マンホールポンプ	水中汚水ポンプ φ150×3.3㎡/min×11m×15kW	2台
	滝沢川横断部水管橋	管径200mm	50. 700m
	玉穂マンホールポンプ	水中汚水ポンプ φ200×4.26㎡/min×10m×11kW	2台
釜無川 4 号幹線	玉穂第2マンホールポンプ	水中汚水ポンプ φ 150×3.0㎡/min×6.0m×5.5kW	2台
	山王川横断部水管橋	管径250mm	31. 300m
釜無川 5 号幹線	貢川横断部水管橋	管径300mm×2条	26. 429 m
釜無川 6 号幹線	逆流防止ゲート設備	鎌田川 左岸 幅1.02m×高0.875m	1門
富士川1号幹線	旧利根川制水ゲート設備	一級河川旧利根川横断部 旧利根川 右岸 幅1.2m×高1.2m 左岸 幅1.2m×高1.2m	1門 1門
	戸川横断部水管橋	管径200mm	53. 000m
	東川伏越	管径450mm×2条	118. 120m
	富士川横断部水管橋	管径450mm×2条	732. 050m
富士川2号幹線	三珠マンホールポンプ	水中汚水ポンプ φ150×2.4㎡/min×12m×11kW	2台
	制水ゲート設備	芦川 右岸 φ1.0m 左岸 φ1.0m	1門 1門
	市川三郷 マンホールポンプ	水中汚水ポンプ $\phi 80 \times 0.64 \mathrm{m}^3 / \mathrm{min} \times 9.3 \mathrm{m} \times 3.7 \mathrm{kW}$	2台
富士川3号幹線	市川三郷第 2 マンホールポンプ	水中汚水ポンプ $\phi 80 \times 0.64$ min×13.8m×5.5kW	2台

表 4-14 幹線流量計測設備概要

流 量 計 番 号	設 備 名 称	管径 (mm)	流量計口径 (mm)	最大目盛 (㎡/h)	形式
1	釜無川1号若草町浅原流量計	1,650	1,650	3,000	PBF、圧力式
2	釜無川1号田富町布施流量計	1,500	1,500	2, 500	PBF、圧力式
3	釜無川1号昭和町築地新居流量計	1, 200	1, 200	4,000	PBF、圧力式
4	田富ポンプ場流量計	1	250 200	700	電磁式
5	釜無川 6 号田富町布施流量計	1,000	1,000	1,000	PBF、圧力式
6	富士川1号増穂町長沢流量計	1, 200	1, 200	1,000	PBF、圧力式
7	富士川1号増穂町青柳流量計	450	450	300	PBF、圧力式
8	鰍沢ポンプ場流量計	_	150	400	電磁式
9	双葉ポンプ場流量計	_	350	1, 300	電磁式
1 0	敷島ポンプ場流量計	_	250	750	電磁式
1 1	韮崎第1ポンプ場流量計	_	250	900	電磁式
1 2	市川大門ポンプ場流量計	_	400	2, 000	電磁式
1 3	韮崎第3ポンプ場流量計	_	200	700	電磁式
1 4	韮崎第2ポンプ場流量計	_	300	1, 000	電磁式
備考	流量計番号は図4-6流域幹線系統	 図中の設備番	番号を示す。		

2 施設運転管理状況

(1) 機械設備運転管理状況

①各設備の運転状況等

主要機器運転状況を表 4-15に、し渣及び沈砂搬出状況を表 4-16に、薬品・給水・燃料使用状況を表 4-17に、中継ポンプ場運転状況を表 4-18に示す。

各設備については下記のとおり運転を行った。

ア) スクリーンポンプ設備

スクリーン設備については主としてNo.1 水路を使用した。細目スクリーン自動除塵機の運転は9回/日のタイマー運転とした。揚砂ポンプは通常は運転せず、1 箇月毎の定期点検運転のみとした。

汚水ポンプについては吐出量 2,900 m³/h を通常時の上限とし、ポンプ井水位一定制御による運転を行った。流入水量が多い時間帯については流入ゲートの開度を調整して管内貯留を行った。

汚水ポンプの運転号機はNo.2号機(No.2-1またはNo.2-2号機)の1台運転を基本とし、流量の少ない時間帯はNo.1号機(No.1-1 またはNo.1-2号機)の1台運転とした。No.2-1, No.2-2 号機及びNo.1-1, No.1-2号機は1箇月毎の切替運転とした。

イ) 最初沈殿池設備

年間を通して2池使用とした。機器更新工事により $N_0.1-1 \sim N_0.1-4$ 池は使用できなかったため、 $N_0.2 \sim 4$ 池を切替えて使用した。

汚泥掻寄機は連続運転とし、スカムスキマーは4回/日のタイマー運転とした。また、生汚泥 ポンプは1時間毎の間欠運転とした。

ウ) 反応タンク設備

4~12月下旬は6池使用とし、12月下旬~3月は7池使用とした。

各槽の水中機械曝気機はコスト縮減のため1槽目については間欠運転とし、3槽目は2台中1台の運転を停止させて運用した。その他の水中機械曝気機については連続運転を行った。

送風機の運転は吐出圧一定制御の連続運転を行い、また、曝気風量は風量調節弁にて1系ではDO一定制御を行い、2系ではOR制御を行った。運転号機はNo.2 号機(No.2-1 またはNo.2-2 号機)の1台運転を基本とし、風量不足時はNo.1 号機(No.1-1 またはNo.1-2 号機)の1台を追加で運転した。また、No.2 号機(No.2-1 またはNo.2-2 号機)は、夏季に能力が高めのNo.2-2 号機を主機とし、その他の季節及びNo.1 号機は1 箇月毎の切替運転を基本とした。

工) 最終沈殿池設備

年間を通して、4池使用とした。

汚泥掻寄機は連続運転とし、スカムスキマーは4回/日のタイマー運転とした。また、返送汚泥ポンプは比率制御により返送率50%の連続運転とした。余剰汚泥ポンプは汚泥の発生状況にあわせ1時間毎の間欠運転を行った。

才) 塩素滅菌設備

次亜塩注入ポンプはNo.2号機を主機とした1台運転で、注入率一定制御により連続運転を行った。

カ) 放流ポンプ設備

放流河川水位が上昇したときの非常設備であり、通常はバイパスさせ自然流下による放流を 行った。本年度は河川水位上昇に伴う放流ポンプの強制放流はなかった。

キ)機械汚泥濃縮設備

遠心濃縮機は余剰汚泥のみの処理で、濃度一定制御による自動運転とした。運転台数は1台を24時間連続運転とし、2台目は夜間を中心として追加運転を行うことを基本とした。また、凝集剤を添加することによりボウルの回転数を下げて運転を行い、使用電力量の低減を図った。

ク) 重力汚泥濃縮設備

最初沈殿池より送泥された生汚泥を希釈濃縮法により重力濃縮を行った。

 $4\sim12$ 月中旬はNo. 2 タンクを使用し、12 月中旬~3 月はNo. 1 タンクを使用した。汚泥掻寄機の運転は連続運転とした。

ケ)汚泥脱水設備

汚泥脱水機はいずれも遠心脱水機であり、コンベアの搬送トルクを指標とした制御による自動 運転を行った。No.2 号機を主機とし、毎日 $1\sim2$ 台運転で 24 時間/日程度運転を行った。

コ) 脱臭設備

スクリーンポンプ棟、汚泥濃縮棟、汚泥棟のいずれの脱臭設備も連続運転とした。

サ) 関連中継ポンプ場

市川大門ポンプ場、田富ポンプ場、双葉ポンプ場、韮崎第3ポンプ場については、ポンプの可変速運転によりポンプ井水位一定制御の運転を行い、その他のポンプ場、マンホールポンプの汚水ポンプについては、ポンプ井水位制御による運転を行った。

シ) 伏越設備

釜無川横過トンネルは、 $4 \sim 1$ 月はNo.2 水路を使用し、2 月 ~ 3 月はNo.1 水路を使用した。なお、滞泥防止対策としてゲートの開閉により毎週2回のフラッシングを実施した。

②未使用機器の保守

未使用機器は、定期点検時に保守運転を行い、予備機のある機器については、基本的に月1回の 切替運転を行った。

マンホールポンプの運転号機については交互切替運転とした。

③機器故障状況

本年度の主な機器故障状況を表4-19に示す。

				表 4 -	1.5	主要機	器運動	狀況					(単位	: 時間)
1	項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
No. 1-1 汚		0.5	54. 0	1. 3	250. 1	144. 7	131.3	0.5	55. 9	22. 3	22. 6	19. 5	7.4	710.1
No. 1-2 汚	がポンプ	65. 2 34. 1	12. 9 501. 8	194. 3 87. 5	62. 3 635. 1	303. 3 139. 8	10. 6 653. 1	165. 0 58. 0	71. 6 558. 3	106. 3 101. 9	8. 7 591. 0	21. 5 436. 1	18. 9 276. 9	1, 040. 6 4, 073. 6
	5水ポンプ	681. 3	225. 3	625. 0	105. 3	594. 4	58. 0	681. 8	152. 9	626. 4	126. 8	202. 3	450. 9	4, 530. 4
	三汚泥ポンプ	26. 3	408. 7	0.0	87. 0	13. 6	140.6	0.8	4. 9	1. 8	7. 2	2. 3	389. 2	1, 082. 4
	三汚泥ポンプ	569. 1	210.6	581. 5	523.0	591.5	446.5	607. 0	578. 1	597. 9	606. 4	553. 5	230.0	6, 095. 1
No. 1-1 送 No. 1-2 送		7. 4	0.9	13. 8	34. 7 78. 3	1. 0 210. 6	15. 8 93. 1	0. 7	0. 7 22. 8	0. 7 5. 1	0. 9	0.9	4. 0 13. 9	81. 5 462. 4
No. 1-2 运 No. 2-1 送		24. 4 105. 7	541. 8	11. 5 159. 0	452. 2	167. 4	156. 2	45. 9	418. 6	245. 8	350. 3	318.8	492. 4	3, 454. 1
No. 2-2 送		613. 7	201.6	558. 0	291. 3	571. 3	561. 1	697. 4	296. 9	489. 1	390. 5	347. 6	244. 1	5, 262. 6
	区送汚泥ポンプ	24. 2	730.0	94. 7	727.8	57.8	678.8	49. 5	621.7	88. 4	597. 3	68.8	683.0	4, 422. 0
	区送汚泥ポンプ 	703. 9	13. 3	657.0	16. 9	727. 1	41.4	728. 8	150.4	694. 6	154. 0	412. 2	210. 1	4, 509. 7
	፩送汚泥ポンプ ፩送汚泥ポンプ	0. 0 20. 8	0. 0 730. 1	0. 0 97. 1	0. 0 728. 0	0.0	0. 0 678. 9	0. 0 37. 8	0. 0 611. 6	0. 0 40. 9	0. 0 587. 7	0. 0 239. 4	0. 0 506. 0	0.0 4,332.1
	区送汚泥ポンプ (送汚泥ポンプ)	704. 2	13. 5	653. 9	16. 1	53. 8 727. 0	41.1	728. 0	120.8	693. 9	153. 7	603. 7	56. 3	4, 512. 2
	区送汚泥ポンプ	15. 7	730. 0	62. 8	726. 9	32. 5	678.6	15. 6	600.8	40. 6	587. 6	67. 3	684. 0	4, 242. 4
	区送汚泥ポンプ	704. 2	13.7	654.0	16.9	726. 9	41.4	728. 2	117.7	694.0	153.8	602.6	56. 1	4, 509. 5
		15. 9	728. 6	63. 5	728. 5	136. 4	679.3	37. 8	593. 7	41. 9	586. 0	68. 7	684. 6	4, 364. 9
	☑送汚泥ポンプ < 無汚泥ポンプ	704. 1	14. 8 113. 2	653. 4 10. 2	15. 4 122. 2	602. 5	40. 6 135. 4	706. 0 2. 7	122. 1 121. 8	692. 5 4. 8	155. 4 93. 2	596. 8 8. 3	55. 5 146. 6	4, 359. 1 762. 9
	<mi>・剰汚泥ポンプ</mi>	121. 6	2. 5	114. 4	2. 7	101. 1	19. 2	83. 9	15. 5	116. 5	29. 1	71. 1	6.8	684. 4
		2. 5	121.6	10. 0	130. 7	18. 3	111. 2	2. 3	96. 0	5. 2	82. 5	7. 2	33. 7	621. 2
	₹剰汚泥ポンプ	111.0	2.3	108.0	2.6	104. 5	4.8	176. 6	20.1	93. 1	26. 5	65. 7	6.4	721.6
	*剰汚泥ポンプ	118. 4	137. 3	124. 7	153. 5	150. 7	126. 3	124. 5	109.6	136. 0	119. 3	80. 4	136. 8	1, 517. 5
	< 剰汚泥ポンプ	124. 2 719. 5	140. 6 737. 3	131. 8 716. 6	151. 5 743. 7	157. 7 738. 2	132. 1 719. 6	138. 5	134. 3 715. 4	144. 5 734. 0	120. 8 740. 8	82. 0	143. 6 739. 9	1, 601. 6 8, 714. 1
	(亜塩住人ホンプ で亜塩注入ポンプ	0.1	6.0	0.1	0. 1	0.1	0.1	743. 6 0. 1	0.1	0.1	0.1	665. 5 0. 1	0.1	8, 714. 1 7. 1
	マ亜塩注入ポンプ	0. 1	0. 3	0. 1	0. 1	0. 1	0. 1	0. 1	0. 1	0.1	0. 1	0. 1	0. 1	2. 1
	対流ポンプ	0.2	0.1	0.1	0.9	0.7	0.5	0. 5	0.4	0.5	0.4	0.4	0.5	5. 2
	女流ポンプ	0.2	0.1	0.1	0.5	0.5	0.5	0.6	0.7	0.4	0.3	0.5	0.5	4.9
	牧流ポンプ 牧流ポンプ	0. 2	0.1	0. 1	0. 7	0. 5	0.7	0.6	1. 0	0.6	0.7	0. 5	0.8	6. 5
	を心濃縮機	451. 9	571. 0	48. 9	0.0	0.0	0.0	138. 9	0.0	0. 0	13. 3	277. 1	577. 1	2, 078. 2
	 心濃縮機	312. 5	211.6	639. 2	689.6	674. 4	647.6	528. 7	636. 0	611. 1	557. 9	227.8	228. 3	5, 964. 7
	遠心濃縮機	420.5	487.5	549. 1	689.7	672. 7	643.7	658. 5	585.3	615. 5	559. 2	247.7	323.8	6, 453. 2
	を心脱水機 を心脱水機	213. 6	225. 8	124. 6	40.3	37. 4	64. 7	41. 9	45. 2	62. 5	435. 5	507. 3	193. 9	1, 992. 7
	き	632. 0	672. 5 0. 1	599. 4 1. 1	700. 9	688. 1 1. 1	634. 4	692. 9	662. 1 0. 2	665. 5 1. 1	319. 9	144. 0 0. 2	608. 3	7, 020. 0 5. 4
	常用発電機	0. 1	0. 1	1. 2	0.0	0. 9	0.0	0. 0	0. 0		0. 1	0. 1	1. 1	3. 6
				= 1	1.0	1 冰 7	イドンナナル	.46n. 11 1.141.	эп					
	項目	4月	5月	表 4 -	<u>16</u> 7月	し <u>催</u> 及 8月	. <u>い仏的</u> 9月	搬出状	<u>况</u> 11月	12月	1月	2月	3月	合計
し渣搬出	量(水処理系) (kg)	1,850	1, 891	1,897	2,096	1,713	1, 911	1, 763	1,879	2, 081	2, 148	1, 882	2, 260	23, 371
	量(汚泥処理系) (kg)	3, 496	910	880	1, 142	683	1, 259	835	1,721	1, 991	2, 619	2, 023	679	18, 238
沈砂搬出	量 (kg)	1, 466	501	560	517	509	424	1, 034	648	489	584	551	557	7, 840
				表4-	1 7	薬品・	給水・	燃料使	用状況	<u>.</u>				
	項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
1	那塩素剤 (kg)	0	0	0	0	0	0	0	0	-	0		0	0
	マ亜塩素酸ナトリウム (L)高分子凝集剤 (kg)	13, 780 2, 172. 2	14, 270 2, 248. 4	2 014 0	2 071 6	15, 310 2, 035. 2	14,530	14, 800 2, 041. 4	14, 160 1, 930. 2	14, 290 2, 026. 0	14,000		14, 150 2, 458. 8	171, 720 26, 946. 2
	月臭剤(重力濃縮系) (L)	4, 020				-		4, 080	3,840		4, 160		3, 920	50, 080
消	肖臭剤(脱水機系) (L)	2, 110	2, 220	2, 320	2, 080	2, 310	2, 050	2, 170	1,970	1, 970	2, 350	1,760	2, 220	25, 530
	:水 (m³)	118	124	100	124	122	137	164	199	161	156	144	156	1, 705
	りろ過水 (m³) ‡戸水 (m³)	24, 700	26, 624											
	#戸水 (m²) 重油 (L)			25, 603	26, 807	26, 060	25, 198	25, 444	24, 445	24, 244	26, 539	22, 828	28, 318	306, 810
7,111		35	36	0	0	0	0	0	0	0	0	0	28, 318 0	0
		35	36	0 553	0 21	0 428	0 49	0 27	37	0	,		28, 318 0 559	0 2, 181
キハー	退久		36	0 553 表4-	0 21 1 8	0 428 中継ポ	0 49 シブ場	0 27 運転状	0 37 況	0 319	0 57	60	28, 318 0 559 (単位	0 2, 181 : 時間)
ポンプ場		4月	36 5月	0 553 表4- 6月	0 21 18 7月	0 428 中継ポ 8月	0 49 ジンプ場 9月	0 27 運転状 10月	0 37 況 11月	0 319 1 2月	0 57 1月	0 60 2月	28,318 0 559 (単位 3月	0 2,181 : 時間) 合計
韮崎第1	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ		36	0 553 表4-	0 21 1 8	0 428 中継ポ	0 49 シブ場	0 27 運転状	0 37 況	0 319	0 57	60	28, 318 0 559 (単位	0 2, 181 : 時間)
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ	4月 44.6 301.4 5.0	5月 219.7 82.7 4.4	0 553 表 4 6月 80.7 290.8 5.5	0 21 18 7月 355.2 104.7 6.4	0 428 中継ポ 8月 94.5 288.4 8.5	0 49 シプ場 9月 254.9 104.7 9.6	0 27 運転状 1 0 月 75. 3 306. 5 4. 3	0 37 況 1 1 月 216. 3 82. 2 4. 5	0 319 1 2 月 75. 9 278. 8 5. 6	0 57 1月 208.0 80.7 4.3	0 60 2月 68.3 216.5 3.6	28,318 0 559 (単位 3月 275.9 71.4 4.4	0 2, 181 : 時間) 合計 1, 969. 3 2, 208. 8 66. 1
韮崎第1	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機	4月 44.6 301.4 5.0 0.1	36 5月 219.7 82.7 4.4 0.0	0 553 表 4 — 6月 80.7 290.8 5.5 1.0	0 21 18 7月 355.2 104.7 6.4 0.0	中継式 8月 94.5 288.4 8.5 0.3	0 49 シプ場 9月 254.9 104.7 9.6 0.0	0 27 運転状 1 0 月 75.3 306.5 4.3 0.1	0 37 況 1 1 月 216. 3 82. 2 4. 5 0. 0	0 319 1 2 月 75. 9 278. 8 5. 6 1. 0	0 57 1月 208.0 80.7 4.3 0.0	0 60 2月 68.3 216.5 3.6 0.2	28, 318 0 559 (単位 3月 275. 9 71. 4 4. 4 0. 0	0 2, 181 : 時間) 合計 1, 969. 3 2, 208. 8 66. 1 2. 7
韮崎第1 ポンプ場	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ	4月 44.6 301.4 5.0 0.1 18.9	5月 219.7 82.7 4.4 0.0 93.2	0 553 表 4 6月 80.7 290.8 5.5 1.0 36.3	0 21 18 7月 355.2 104.7 6.4 0.0 130.7	中継式 8月 94.5 288.4 8.5 0.3 31.9	0 49 シプ場 9月 254.9 104.7 9.6 0.0 93.6	0 27 運転状 1 0 月 75. 3 306. 5 4. 3 0. 1 30. 7	0 37 況 1 1 月 216. 3 82. 2 4. 5 0. 0 96. 0	0 319 1 2 月 75. 9 278. 8 5. 6 1. 0 34. 1	0 57 1月 208.0 80.7 4.3 0.0 96.1	0 60 2月 68.3 216.5 3.6 0.2 37.7	28, 318 0 559 (単位 3 月 275. 9 71. 4 4. 4 0. 0 124. 3	0 2,181 : 時間) 合計 1,969.3 2,208.8 66.1 2.7 823.5
韮崎第1	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ	4月 44.6 301.4 5.0 0.1	36 5月 219.7 82.7 4.4 0.0	0 553 表 4 — 6月 80.7 290.8 5.5 1.0	0 21 18 7月 355.2 104.7 6.4 0.0	中継式 8月 94.5 288.4 8.5 0.3	0 49 シプ場 9月 254.9 104.7 9.6 0.0	0 27 運転状 1 0 月 75.3 306.5 4.3 0.1	0 37 況 1 1 月 216. 3 82. 2 4. 5 0. 0	0 319 1 2 月 75. 9 278. 8 5. 6 1. 0	0 57 1月 208.0 80.7 4.3 0.0	0 60 2月 68.3 216.5 3.6 0.2 37.7	28, 318 0 559 (単位 3月 275. 9 71. 4 4. 4 0. 0	0 2, 181 : 時間) 合計 1, 969. 3 2, 208. 8 66. 1 2. 7
韮崎第1ポンプ場 韮崎第2	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 非常用発電機	4月 44.6 301.4 5.0 0.1 18.9 133.5 0.5	5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5	80.7 290.8 5.5 1.0 36.3 103.6 0.5	0 21 1 8 7 月 355. 2 104. 7 6. 4 0. 0 130. 7 37. 9 0. 6 0. 0	94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5	0 27 1 0 月 75.3 306.5 4.3 0.1 30.7 135.8 0.5	0 37 況 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4	0 319 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6	0 57 1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5	28, 318 0 559 (単位 3 月 275. 9 71. 4 4. 4 0. 0 124. 3 33. 4 0. 7 0. 0	0 2,181 : 時間) 合計 1,969.3 2,208.8 66.1 2.7 823.5 919.1
韮崎第1ポンプ場 韮崎第2ポンプ場	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ	4月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0	5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0	表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1	0 21 18 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4	中継ポ 8月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8	0 27 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3	0 37 況 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7	0 319 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4	28, 318 0 559 (単位 3月 275. 9 71. 4 4. 4 0. 0 124. 3 33. 4 0. 7 0. 0 272. 1	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6
韮崎第1ポンプ場 韮崎第2	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 39.4 283.0	36 5 月 219.7 82.7 4.4 93.2 38.3 0.5 0.0 201.0 79.3	表 4 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.1 92.2 284.9	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0	り 428 中継ポ 8月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8	0 27 1 O月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9	0 37 況 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0	0 60 2 月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 1 255.4	28, 318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1
韮崎第1 ポンプ場 韮崎ンプ場 韮崎第3	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ 非常用発電機	4月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 5 1.0 39.4 283.0 0.0	36 5 月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1	表4 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0	0 21 18 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 0.354.4 105.0 0.1	り 428 中継式 8月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1	0 49 9月 254.9 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0	0 27 運転状 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1	0 37 記 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0	0 57 1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0	0 60 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1
韮崎第1 ポンプ場 韮崎ンプ場 韮崎第3	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 39.4 283.0	36 5 月 219.7 82.7 4.4 93.2 38.3 0.5 0.0 201.0 79.3	表 4 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.1 92.2 284.9	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0	り 428 中継ポ 8月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8	0 27 1 O月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9	0 37 況 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0	0 60 2 月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 1 255.4	28, 318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1
韮崎第1 ポンプ場 韮崎第2 ポンプ場	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ No. 3 汚水ポンプ ま常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ no. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 39.4 283.0 0.0 48.5	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5	0 553 表 4 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8	り 428 中継ポ 84月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1 110.4	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2	0 27 連転状 10月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1	0 37 況 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 97.9	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1	0 60 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0	28,318 0 559 (単位 3 月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3
韮崎第1場 ・	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 表 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ ま常用発電機 No. 1-1 汚水ポンプ No. 2-1 汚水ポンプ No. 2-1 汚水ポンプ No. 2-1 汚水ポンプ	4月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 48.5 404.8 0.3 3 0.0	36 5 月 219.7 82.7 4.4 4.0 93.2 38.3 0.5 0.0 79.3 1.1 278.5 95.4 0.2 0.1	0 553 表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 5 0.0	0 21 1 8 7月 355.2 104.7 6.4 0.0 0.1 330.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 1.1	り ・	の 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 181.2 4.9 0.2	0 27 軍転状 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8 8	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4
韮崎第1 ポンプ場 韮崎第2場 並ペンプ場 ボンブ 3 双葉 ポンプ場	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ No. 2 汚水ポンプ No. 2-1 汚水ポンプ No. 2-1 汚水ポンプ No. 1-1 汚水ポンプ Ro. 2-1 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 283.0 0.0 48.5 404.8 0.3 0.0 0.2	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0	0 553 表 4 6月 80.7 290.8 5.5 1.0 0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2	0 21 1 8 7月 355.2 104.7 6.4 0.0 0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2	・	の 49 9月 254.9 104.7 9.6 0.0 0.3.6 37.8 0.5 0.0 0.1 335.2 181.2 4.9 0.2	0 27 27 27 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9 0.2 281.6	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8	0 60 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.0 1.2 255.4 0.0 0.0 17.2 305.6 0.1 0.0 0.4 17.2	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 7.8 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4
韮崎第1場 1場第2場 ・	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ すま用発電機 No. 1-1 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ ルo. 2-1 汚水ポンプ 表。1-2 汚水ポンプ No. 1-5 ボポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 0.0 48.5 404.8 0.3 0.0 0.2 2	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0 0.0	0 553 表 4 80.7 290.8 5.5 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 1.1 0.1	の 428 中継式 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1 110.4 332.3 6.9 1.4 3.1 3.1 3.1 3.1 3.1 3.1 4.0 3.1 3.1 3.1 3.1 4.0 3.1 3.1 4.0 3.1 3.1 4.0 3.1 4.0 3.1 4.0 3.1 4.0 3.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 181.2 4.9 0.2 0.2	0 27 27 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1	0 37 次 1 1月 216.3 82.2 4.5 96.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9 0.9 0.2	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1 527.3 0.0	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 0.1 331.4 88.6 5.8 1.0 0	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1
韮崎第1 ポンプ場 韮崎第2場 並ペンプ場 ボンブ 3 双葉 ポンプ場	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ No. 1 汚水ポンプ No. 2 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ まで用発電機 No. 1-1 汚水ポンプ No. 2-1 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ 表 2-1 汚水ポンプ No. 1-2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 283.0 0.0 48.5 404.8 0.3 0.0 0.2	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0	0 553 表 4 6月 80.7 290.8 5.5 1.0 0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2	0 21 1 8 7月 355.2 104.7 6.4 0.0 0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2	・	の 49 9月 254.9 104.7 9.6 0.0 0.3.6 37.8 0.5 0.0 0.1 335.2 181.2 4.9 0.2	0 27 27 27 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9 0.2 281.6	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8	0 60 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.0 1.2 25.4 0.0 0.0 17.2 305.6 0.1 0.0 0.4 17.2	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 7.8 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4
韮崎第1	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ No. 2 汚水ポンプ 表・2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ オ常用発電機 No. 1-1 汚水ポンプ ア T デスポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ	4月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 39.4 283.0 0.0 48.5 404.8 0.0 0.2 0.2 320.8 0.0 127.6	36 5月 219.7 82.7 4.4 4.0 93.2 38.3 0.5 0.0 201.0 201.0 1.1 278.5 95.4 0.2 0.1 0.0 0.0 1.1 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0 553 表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 5 0.0 0.2 0.6 320.4 0.6	0 21 1 8 7月 355.2 104.7 6.4 0.0 0.1 30.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 2 1.1 0.1 425.0 1.1 0.1 426.0 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	の 428 中継式 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1 110.4 32.3 6.9 9.3 4.3 1.4 334.3 0.3 1.4 334.3 0.3 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	0 49 9月 254.9 104.7 9.6 0.0 0.0 93.6 37.8 0.5 0.0 0.1 335.2 181.2 4.9 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1	0 27 運転状 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9 0.2 281.6 0.4 103.1 1463.5	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1 527.3 0.0 3.7 0.0	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8 8.1.0 406.5 0.0 7.8 0.6	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 0.0 17.9 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 表・2 汚水ポンプ ルo. 2 汚水ポンプ ルo. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ Tr常用発電機 No. 1-1 汚水ポンプ No. 2-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 39.4 283.0 0.0 48.5 404.8 0.3 0.0 0.2 2 320.8 0.2 332.8 0.2 332.8 0.3	36 5 月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 1.2 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5	表 4 — 6月 80.7 290.8 5.5 1.0 0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 32.4 0.6 35.6 0.6	0 21 1 8 7月 355.2 104.7 6.4 0.0 0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 1.1 0.1 425.8 426.8 124.0 124.0 125.8 124.0 126.1 1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	の 49 9月 254.9 104.7 9.6 0.0 0.0 0.5 0.0 253.8 115.0 0.1 335.2 4.9 0.2 0.0 0.0 0.1 34.7 4.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 27 27 27 10月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 0.9 0.2 281.6 0.4 103.0 114.5 1	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1 1527.3 0.0 0.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 0.0 406.5	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.0 17.2 305.6 0.1 0.0 421.0 0.0 134.4 1386.1	28, 318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 7.8 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2 2, 936.0
韮崎第1 ボンプ 韮崎第2 韮崎第3 場 ボンブ 敷島 ポンプ	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ ルo. 2-1 汚水ポンプ 非常用発電機 No. 1-2 汚水ポンプ 非常用発電機 No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 表の. 1-3 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ 表の. 1-1 汚水ポンプ No. 1-2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 48.5 404.8 0.3 0.2 2 320.8 0.0 0.2 320.8 0.0 0.2	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0 0.1 1.1 1.1 1.5 1.5 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 320.4 0.1 161.4 356.9 83.9	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 1.1 1.0 1.1 425.8 0.1 425.8 0.1 427.8 1.1 425.8 1.1 4 1.1	・	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 181.2 0.2 0.2 0.0 414.7 0.5 476.0 0.9 99.0	0 27 27 10月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 96.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 0.2 2281.6 0.4 103.0 1.1 463.5 131.5 35.8	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1 1 527.3 0.0 3.7 0.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 0.0 406.5	0 60 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.0 0.0 17.2 305.6 0.1 0.0 0.0 17.2 1305.6 0.1 0.0 0.0 19.0 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 551.2 8.0 46.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2 2, 936.0 913.6
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ ア・カース で	4 月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0	36 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0 0.1 278.0 1.1 43.6 137.4 43.6 0.0 0.0	表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 320.4 0.0 161.4 385.9 83.9 1.1	0 21 1 8 7 月 355. 2 104. 7 6. 4 0. 0 130. 7 37. 9 0. 6 0. 0 354. 4 105. 0 0. 1 427. 8 124. 0 1. 0 1. 1 0. 1 0. 1 425. 8 0. 1 425. 8 124. 0 0. 2 1. 1 1. 1 425. 8 0. 1 425. 8 124. 0 0. 2 1. 1 425. 8 0. 1 427. 8 124. 0 0. 2 1. 1 427. 8 124. 0 0. 2 1. 1 427. 8 124. 0 0. 1 425. 8 124. 0 0. 1 425. 8 124. 0 0. 1 427. 8 124. 0 0. 1 427. 8 124. 0 125. 0 125	り ・	の 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 4.9 0.2 0.2 0.3 4.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 27 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 134.6 0.9 0.2 281.6 0.4 103.0 114.1 134.5 134.5 0.0 135.0 136	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 97.9 97.9 1.5 0.1 527.3 0.0 3.7 0.0	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 0.0 263.9 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 8.6 6.6 460.9 286.8	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 19.0 0.0 19.0 0.0 19.0 0.0 134.4 4 386.1 84.0 0.0 0.0 0.0 0.0 134.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 551.2 8.0 46.3 0.0	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2, 77 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 1, 640.4 2, 417.8 2, 712.8 4.1 3, 906.2 2, 936.0 913.6 3, 0
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ ルo. 2-1 汚水ポンプ 非常用発電機 No. 1-2 汚水ポンプ 非常用発電機 No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 表の. 1-3 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ 表の. 1-1 汚水ポンプ No. 1-2 汚水ポンプ	4 月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 48.5 404.8 0.3 0.2 2 320.8 0.0 0.2 320.8 0.0 0.2	36 5月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 0.0 0.1 1.1 1.1 1.5 1.5 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 320.4 0.1 161.4 356.9 83.9	0 21 1 8 7月 355.2 104.7 6.4 0.0 130.7 37.9 0.6 0.0 354.4 105.0 0.1 427.8 124.0 0.2 1.1 1.0 1.1 425.8 0.1 425.8 0.1 427.8 1.1 425.8 1.1 4 1.1	・	0 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 181.2 0.2 0.2 0.0 414.7 0.5 476.0 0.9 99.0	0 27 27 10月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 96.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 0.9 0.2 2281.6 0.4 103.0 1.1 46.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 0.1 1 527.3 0.0 3.7 0.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 0.0 406.5	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 19.0 0.0 19.0 0.0 19.0 0.0 134.4 4 386.1 84.0 0.0 0.0 0.0 0.0 134.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 551.2 8.0 46.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2 2, 936.0 913.6
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ 東常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ No. 2 汚水ポンプ Tar 用発電機 No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ Tar 用発電機 No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ No. 1-1 汚水ポンプ	4月 44.6 301.4 5.0 0.1 18.9 133.5 1.0 39.4 283.0 0.0 404.8 0.3 0.0 0.2 0.2 320.8 0.0 127.6 382.1 78.2 0.1 37.3	36 5 月 219.7 82.7 4.4 0.0 93.2 38.3 0.5 0.0 79.3 1.1 278.5 95.4 0.0 0.1 278.0 1.1 585.6 137.4 43.6 0.0 0.44.9	表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 320.4 356.9 83.9 1.1 36.9	1 8 7月 355.2 104.7 6.4 0.0 0.1 30.7 37.9 0.6 0.0 0.1 427.8 124.0 0.1 427.8 124.0 0.1 41.1 0.1 0.1 425.0 0.1 427.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	の 428 中継式 8月 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1 110.4 332.3 6.9 1.4 3.1 3.1 3.4 3.1 3.1 3.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	の 49 9月 254.9 104.7 9.6 0.0 93.6 37.8 0.5 0.0 253.8 115.0 0.1 335.2 181.2 4.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 27 運転状 10月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 0.9 0.2 281.6 0.4 103.0 1.1 463.5 131.5 30.8	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 0.0 97.9 370.6 1.5 5 0.1 527.3 0.0 161.3 376.8 71.3	0 57 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 80.6 460.9 286.8 40.6 0.0 45.6	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 0.0 17.9 305.6 0.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 551.2 8.0 46.3 0.0 44.2	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2 2, 936.0 913.6 3.0 471.0
	No. 1-1 汚水ポンプ No. 1-2 汚水ポンプ No. 1-2 汚水ポンプ No. 2-1 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ No. 2 汚水ポンプ No. 3 汚水ポンプ No. 3 汚水ポンプ 非常用発電機 No. 1 汚水ポンプ 非常用発電機 No. 1-1 汚水ポンプ ボール・アット・アット・アット・アット・アット・アット・アット・アット・アット・アット	4月 44.6 301.4 5.0 0.1 18.9 133.5 0.5 1.0 283.0 0.0 48.5 404.8 0.0 0.2 0.2 320.8 0.0 127.6 382.1 78.2 0.1 37.3 37.3 37.3	36 5月 219.7 82.7 4.4 93.2 38.3 0.5 0.0 201.0 79.3 1.1 278.5 95.4 0.2 0.1 278.0 1.1 278.0 0.1 278.0 0.0 0.1 278.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 553 表 4 — 6月 80.7 290.8 5.5 1.0 36.3 103.6 0.5 0.1 92.2 284.9 0.0 112.5 332.7 2.5 0.0 0.2 0.6 320.4 0.6 350.9 83.9 136.9 83.9 136.9	0 21 1 8 7月 355.2 104.7 6.4 0.0 0.3 354.4 105.0 0.1 427.8 124.0 0.2 2 1.1 0.1 425.0 1.1 427.8 1.4 4.0 1.0 1.0 1.0 1.1 4.1 4.1 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	の 428 中継式 94.5 288.4 8.5 0.3 31.9 101.1 1.4 0.1 97.6 313.4 2.1 110.4 32.3 6.9 9.3 4.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	0 49 9月 254.9 104.7 9.6 0.0 0.0 93.6 37.8 0.5 0.0 0.1 335.2 115.0 0.1 335.2 14.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 27 運転状 1 0月 75.3 306.5 4.3 0.1 30.7 135.8 0.5 1.1 69.3 288.9 0.1 94.6 282.4 3.7 0.1 0.1 0.1 1.30.2 4.3 3.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0 37 次 1 1月 216.3 82.2 4.5 0.0 96.0 37.1 0.4 0.0 212.7 73.3 1.1 249.6 0.9 0.2 2281.6 0.4 103.1 1463.5 131.5 35.8 043.8	1 2月 75.9 278.8 5.6 1.0 34.1 128.7 1.0 3.6 305.8 0.0 97.9 370.6 1.5 5 0.1 527.3 0.0 1.6 37.8 1.7 0.0 1.7 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1月 208.0 80.7 4.3 0.0 96.1 37.5 0.7 0.0 263.9 0.0 0.1 331.4 88.6 5.8 1.0 406.5 0.0 7.8 0.6 460.9 286.8 40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 60 60 2月 68.3 216.5 3.6 0.2 37.7 94.4 0.5 0.1 255.4 0.0 0.0 17.2 305.6 0.1 0.0 0.0 17.2 305.6 0.1 0.0 19.0 0.0 19.0 19.0 19.0 19.0 19	28,318 0 559 (単位 3月 275.9 71.4 4.4 0.0 124.3 33.4 0.7 0.0 272.1 47.3 0.1 358.7 71.8 0.3 1.2 0.1 243.2 181.1 0.3 551.2 8.0 46.3 0.4 47.3	0 2, 181 : 時間) 合計 1, 969.3 2, 208.8 66.1 2.7 823.5 919.1 7.8 6.0 2, 417.6 1, 590.1 4.8 2, 462.3 2, 724.0 27.3 5.4 1, 640.4 248.1 2, 712.8 4.1 3, 906.2 2, 936.0 913.6 3.0 471.0

表 4-19 機器故障状況 (機械関連)

機器名称	内容及び原因	処置及び対応
スクリーンポンプ棟	Vベルトプーリーのキーが外れ、空回りし、プーリーと	羽根車シャフト、軸受、
No.1 脱臭ファン	羽根車シャフトが異常摩耗した。	Vベルトプーリーの交換
	原因は経年劣化によるものであった。	を実施した。
水処理施設	No.2 ポンプの能力が低下した。また、逆止弁のシール面	ポンプ及び逆止弁の交換
散水系給水ユニット	が損傷し、止水できない状況となった。	を実施した。
	原因は経年劣化によるものであった。	
スクリーンポンプ棟	絶縁抵抗値が異常に低下した。また、プロペラ軸にガタ	撹拌機の分解整備を実施
No.1 水中撹拌機	付きが見られた。	した。
	原因は経年劣化によるものであった。	
スクリーンポンプ棟	絶縁抵抗値が異常に低下した。また、オイル室への水浸	撹拌機の分解整備を実施
No.2水中撹拌機	入も確認された。	した。
	原因は経年劣化によるものであった。	
汚泥棟	ポンプが吐出しなくなった。ポンプ内のローターカップ	ローターカップリング部
No.1 濃縮機給泥ポンプ	リング部が摩耗し、空回りしていた。	の部品交換を実施した。
	原因は経年劣化によるものであった。	
水処理施設	塔の胴体部において、内側からの摩耗により穴が開き、	FRPシートによる補修
No.1 砂ろ過塔	漏水、および砂が漏れる状態となった。	を実施した。
	原因は経年劣化によるものであった。	

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

(2) 電気設備運転管理状況

①電力使用状況

施設の受電電圧は、釜無川浄化センター、韮崎第1、韮崎第2、韮崎第3、双葉、敷島、田富及び 市川大門ポンプ場は高圧6,600V、鰍沢ポンプ場、 若草、玉穂、玉穂第2、三珠、市川三郷及び市川 三郷第2マンホールポンプは低圧200V (動力) 及び100V (照明) である。

釜無川浄化センター、韮崎第 1、韮崎第 2、韮崎第 3、双葉、敷島、田富、鰍沢及び市川大門ポンプ場の使用電力量と流入下水量の表とグラフをそれぞれ表 4-20~表 4-28、図 4-15~図 4-23に示す。

浄化センターの使用電力量は、371~450千kWh/月の間で推移し、年間として4,946千kWh/年となり 昨年度と比較して約1.0%の減少となった。

これは、水処理施設に関する建設工事に伴う反応タンクの使用池数の制限により、水処理に関わる電力が減少したことによるものである。

浄化センターの原単位電力量と最大需要電力の表とグラフをそれぞれ表 4-29、図 4-24、図 4-25に示す。

原単位電力量は0.242~0.265kWh/m³の間で推移した。

最大需要電力は636~686kWの間で推移した。

浄化センターの契約電力は、電力会社との協議による契約電力決定方式により、年間を通じて701kWとなった。

ポンプ場の契約電力は、韮崎第 1 、韮崎第 2 、韮崎第 3 、双葉、敷島、田富及び市川大門ポンプ場は実量制による契約電力決定方式により、それぞれ25~73kW、20~54kW、11~26kW、128~369kW、24~59kW、42~101kW、46~69kWの間で推移した。また、鰍沢ポンプ場は設備容量による契約電力決定方式により47kWであった。

マンホールポンプの契約電力は、若草、玉穂、玉穂第 2、三珠、市川三郷及び市川三郷第 2 マンホールポンプは、設備容量による契約電力決定方式により、それぞれ33kW、25kW、14kW、25kW、9kW及び13kWであった。

②非常用発電設備運転状況

浄化センターでは、保守点検として、1箇月に1回約5分間の無負荷運転(別途起動スイッチによる起動点検を1年に1回)と6箇月に1回約1時間の実負荷運転を実施し、総発電電力量は860kWhであった。また、8月にNo.2発電機始動渋滞の原因調査による運転(停電なし、発電機運転5分間)、1月にNo.2発電機始動用蓄電池交換後の起動確認による運転(停電なし、発電機運転7分間)を実施した。

なお、停電としては、8月に送電事故に伴う商用受電停電による運転(停電1分未満、発電機運転52分間、発電電力量100kWh)、3月に送電事故に伴う商用受電停電による運転(停電1分未満、発電機運転59分間、発電電力量440kWh)を実施した。

韮崎第1、韮崎第2、韮崎第3、双葉、敷島、田富及び市川大門ポンプ場では、保守点検として、2箇月に1回(韮崎第1、双葉、敷島、市川大門は別途起動スイッチによる起動点検を1年に1回)約5分間の無負荷運転と6箇月に1回約1時間の実負荷運転を実施し、総発電電力量はそれぞれ34kWh、27kWh、35kWh、201kWh、42kWh、61kWh及び80kWhであった。また、韮崎第2ポンプ場では、12月に受変電設備精密点検に伴う商用側給電停止による運転(停電3時間20分、発電機運転3時間6分、発電電力量37kWh)、韮崎第3ポンプ場では、8月に発電機切替不良の原因調査による運転(停電6分間、発電機運転12分間、発電電力量1kWh)、双葉ポンプ場では、12月に受変電設備精密点検に伴う商用側給電停止による運転(停電19分間、発電機運転7分間、発電電力量0kWh未満)、敷島ポ

ンプ場では、1月に燃料流量計不具合の原因調査による運転(停電なし、発電機運転10分間)、田富ポンプ場では、2月に始動用直流電源装置部品交換後の起動確認による運転(停電なし、発電機運転1分未満、発電電力量1kWh未満)を実施した。

なお、停電としては、韮崎第1ポンプ場では、8月に原因不明の商用受電停電による運転(停電9分間、発電機運転10分間、発電電力量1kWh)、10月に原因不明の商用受電停電による運転(停電1分未満、発電機運転3分間、発電電力量1kWh未満)、3月に原因不明の商用受電停電による運転(停電1分未満、発電機運転2分間、発電電力量1kWh未満)、韮崎第3ポンプ場では、8月に原因不明の商用受電停電による運転(停電9分間、発電機運転1時間52分、発電電力量21kWh)、10月に原因不明の商用受電停電による運転(停電1分未満、発電機運転4分間、発電電力量1kWh未満)、3月に原因不明の商用受電停電による運転(停電1分未満、発電機運転4分間、発電電力量1kWh未満)、双葉ポンプ場では、8月に原因不明の商用受電停電による運転(停電1分未満、発電機運転4分間、発電機運転1時間21分、発電電力量1111kWh)、10月に原因不明の商用受電停電による運転(停電1分間、発電機運転4分間、発電機運転4分間、発電機運転4分間、発電電力量111kWh)、3月に送電事故に伴う商用受電停電による運転(停電8分間、発電機運転4分間、発電電力量1kWh未満)、3月に送電事故に伴う商用受電停電による運転(停電8分間、発電機運転4分間、発電機運転4分間、発電機運転4分間、発電機運転1分間、発電機運転4分間、8月に原因不明の商用受電停電による運転(停電9分計、発電機運転3分間、発電電力量2kWh)、10月に原因不明の商用受電停電による運転(停電1分末満、発電機運転3分間、発電電力量1kWh未満)、市川大門ポンプ場では、6月に原因不明の商用受電停電による運転(停電1分間、発電機運転4分間、発電電力量1kWh未満)を実施した。

③機器故障状況

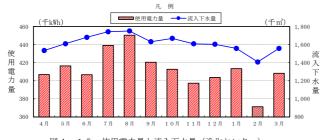
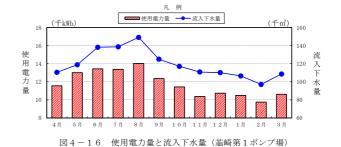

本年度の主な機器故障状況を表4-30に示す。

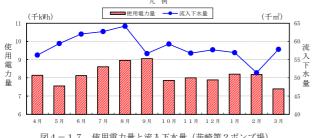
表4-20 使用電力量と流入下水量(浄化センター)

													(単位:上段	kWh,卜段 m)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	406, 776	416, 472	406, 584	439, 104	450, 360	420, 480	412, 728	397, 344	403, 608	413, 328	371, 304	408, 336	4, 946, 424	412, 202
流入下水量	1, 534, 182	1, 609, 219	1,680,461	1, 742, 929	1, 750, 695	1,631,902	1,668,609	1, 608, 938	1, 602, 985	1, 558, 620	1, 408, 244	1, 557, 989	19, 354, 773	1, 612, 898

表4-21 使用電力量と流入下水量(韮崎第1ポンプ場)

													(単位:上段	kWh,下段 ㎡)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	11,549	13, 005	13, 431	13, 377	14, 036	12, 344	11, 427	10, 362	10, 728	10, 480	9, 743	10,619	141, 101	11,758
流入下水量	110, 464	118, 830	138, 141	138, 701	149, 100	124, 879	117, 012	110, 733	110, 022	106, 492	97, 079	108, 616	1, 430, 069	119, 172




図4-15 使用電力量と流入下水量 (浄化センター)

使用電力量と流入下水量(韮崎第2ポンプ場) 表 4 - 22

(単<u>位:上段 kWh,下段 m³)</u> 2月 項目 4月 5月 6月 10月 11月 12月 3月 合計 平均 使用電力量 97, 995 8, 166 8, 146 7,556 8, 123 8,610 8,965 9,054 7,858 8,000 7,891 8, 203 8, 190 7, 399 流入下水量 56,25459, 457 62,04162,729 64, 205 56,688 59, 284 56,801 57, 706 56, 952 51, 421 57,848701, 386 58,449

表4-23 使用電力量と流入下水量(韮崎第3ポンプ場)

(単位:上段 kWh,下段 m³) 平均 項目 4月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月 3月 合計 5,087 6, 228 6,742 4, 995 4, 854 使用電力量 5, 425 6, 124 5,849 5, 385 5, 169 5, 196 5, 378 66, 432 5, 536 49, 446 48, 644 48, 509 664, 543 55, 379 68, 357 67, 387 76,642 59, 962 52, 149 49, 049 47, 515 43,006 流入下水量 53,877

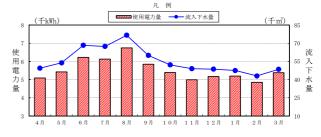
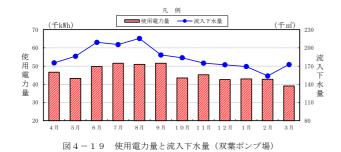


図4-17 使用電力量と流入下水量(韮崎第2ポンプ場)


図4-18 使用電力量と流入下水量(韮崎第3ポンプ場)

使用電力量と流入下水量(双葉ポンプ場) 表 4 - 2 4

(単位:上段 kWh,下段 m³) 2月 平均 項目 4月 5月 6月 8月 10月 11月 12月 1月 3月 合計 7月 9月 使用電力量 46,58943, 18349,746 51, 590 50,972 45, 261 42,902 42, 791 39,085 549,665 45,805 172, 562 2, 206, 614 183, 885 172, 157 流入下水量 175, 299 186, 309 209, 166 205, 523 215.647 188, 353 183, 733 174,828 169, 250 153, 787

使用電力量と流 λ 下水量 (動色ポンプ塩) **丰** 4 — 9 5

				14 4	20 K	2/11 电/13 里	玉 C 1/ルノ マ 1	/小里(万	ス四ハンノ	/ <i>-70</i> 0)			(単位:上段 k	(Wh,下段 m³)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	10, 125	10, 149	11,712	11, 962	12, 461	12, 240	11, 222	11, 357	11, 416	11,774	11, 817	10, 289	136, 524	11, 377
流入下水量	129, 137	139, 998	152, 511	164, 171	164, 556	151, 334	146, 057	138, 347	139, 228	133, 252	120, 382	132, 307	1, 711, 280	142, 607

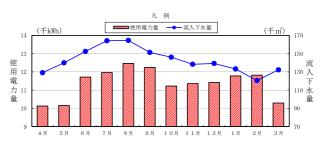


図4-20 使用電力量と流入下水量 (敷島ポンプ場)

表4-26 使用電力量と流入下水量(田宮ポンプ場)

27.7	2 0 D	-/11 电/13	E C 1/1L/\	小里(山田 4.0	/ *////			(単位:上段	kWh,下段 ㎡)
7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
14, 471	18, 297	13, 798	16,079	12,044	14, 875	13, 373	14, 304	13, 244	173, 837	14, 486
150, 114	158, 555	145, 077	149, 937	140, 602	142, 764	142, 416	128, 686	145, 041	1, 729, 109	144, 092

表4-27 使用電力量と流入下水量(鰍沢ポンプ場)

										~•.			(単位:上段	kWh,下段 m³)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	1,819	1,922	1,828	1,924	1,728	1,780	1,847	1,771	1, 678	2,012	1, 816	1,830	21, 955	1,830
流入下水量	12, 553	12, 936	12,678	12,874	13, 160	12, 319	13, 042	12, 402	12, 853	12, 691	11, 581	13, 077	152, 166	12, 681

5月

13,034

142, 130

4月

14, 146

138, 340

6月

16, 172

145, 447

項目

使用電力量

流入下水量

図4-21 使用電力量と流入下水量(田富ポンプ場)

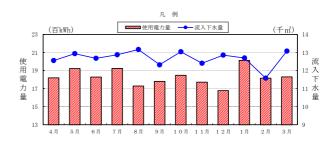


図4-22 使用電力量と流入下水量 (鰍沢ポンプ場)

表4-28 使用電力量と流入下水量(市川大門ポンプ場)

													(単位:上段	kWh,下段 ㎡)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	16, 138	15, 635	17, 294	17, 192	17,011	17, 395	15, 862	16, 064	15, 226	15, 756	15, 157	13, 988	192, 718	16,060
流入下水量	94, 552	98, 490	105, 925	105, 396	105, 480	97, 369	98, 279	94, 378	93, 059	90, 994	81, 025	92, 320	1, 157, 267	96, 439

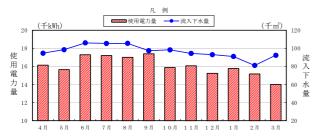


図4-23 使用電力量と流入下水量(市川大門ポンプ場)

表4-29 原単位電力量と最大需要電力(浄化センター)

												(単位:上段	ž kWh/mĭ,卜段 kW)
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	平均
原単位電力量	0. 265	0. 259	0.242	0. 252	0. 257	0. 258	0.247	0.247	0. 252	0. 265	0. 264	0. 262	0. 256
最大需要電力	660	662	660	672	686	677	636	670	670	648	638	665	662

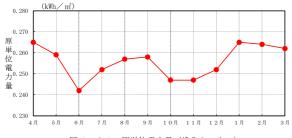


図4-24 原単位電力量 (浄化センター)

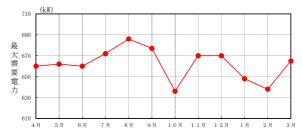


図4-25 最大需要電力 (浄化センター)

表 4 - 3 0 機器故障状況 (電気関連)

機器名称	内容及び原因	処置及び対応
水処理施設	No.3-1 及びNo.3-2 各終沈汚泥掻寄機及びNo.3 終沈汚泥掻	タイマーの交換を実施し
No. 2 終沈 (3)	寄機(クロス)の各運転確認タイマーから異音が発生	た。
補助継電器盤	する状態となった。	
	原因はタイマーの経年劣化によるものであった。	
釜無川横過トンネル	No.1 及びNo.2 の受電操作盤/直流盤電源故障及び制水	No.1 及びNo.2 各受電操作
No. 1 受電操作盤	ゲート操作盤電源故障の警報が発生し、No.1 制水ゲー	盤内の無停電電源装置送
No.2受電操作盤	ト操作盤の電圧計指示値が0Vとなった。	り用MCCBを投入し、
No. 1 制水ゲート操作盤	原因は落雷の影響によるNo.1及びNo.2各受電操作盤内	No.1制水ゲート操作盤内
	の無停電電源装置送り用MCCBのトリップ、No.1制	の電圧指示計用ヒューズ
	水ゲート操作盤内の電圧指示計用ヒューズ切れ及び電	及び電圧検出リレーの交
	圧検出リレーの焼損によるものであった。	換を実施した。
管理本館	蓄電池の内部抵抗値が異常に上昇し、寿命値を大幅に	蓄電池の交換を実施し
直流電源装置	超過する状態となった。	た。
蓄電池盤	原因は蓄電池の経年劣化によるものであった。	
韮崎第1ポンプ場	防犯キースイッチの解除が機能しない状態となった。	防犯キースイッチの交換
防犯設備	原因は防犯キースイッチの経年劣化によるものであっ	を実施した。
	た。	
管理本館	操作盤内の自動運転タイマー画面に「E2」(メモリ	タイマーの交換を実施し
No. 2 乾式	異常)のエラーが表示し、使用不能となった。	た。
エアフィルター操作盤	原因はタイマーの経年劣化によるものであった。	
敷島ポンプ場	侵入警報が発報しない状態となった。	防犯装置本体の交換を実
防犯設備	原因は防犯装置本体の経年劣化によるものであった。	施した。
釜無川横過トンネル	200V電圧計の内部温度が異常に高い状態となった。	電圧計の交換を実施し
No. 1 受電操作盤	原因は電圧計の経年劣化によるものであった。	た。
双葉ポンプ場	油面計の計測値が不安定な状態となった。	発信器トランスミッター
貯油槽油面計	原因は油面計の発信器トランスミッターの経年劣化に	の交換を実施した。
	よるものであった。	
管理本館	No.2自家発電機の1回目の始動が失敗する状態となっ	蓄電池の交換を実施し
No. 2 始動用直流電源盤	た。	た。
	原因は蓄電池の経年劣化によるものであった。	
汚泥棟	給泥ポンプ流量手動設定器の表示が全て消灯して異音	手動設定器の交換を実施
No.3遠心濃縮機制御盤	が生じ、流量制御が異常な状態となった。	した。
	原因は手動設定器の経年劣化によるものであった。	
水処理施設	レベル/流量変換器の表示が異常となり、流量変換信	レベル/流量変換器の交
No. 2 水処理流入流量計	号を出力しない状態となった。	換を実施した。
	原因はレベル/流量変換器の経年劣化によるものであ	
	った。	
水処理施設	反応タンク2及び終沈2各床排水ポンプの自動及び手	タイマーの交換を実施し
No.3終沈 (3)	動制御が機能しない状態となった。	た。
補助継電器盤	補助継電器盤内の反応タンク2及び終沈2各床排水ポ	
	ンプ共通電源確認タイマーの経年劣化によるものであ	
	った。	
放流ポンプ棟	無停電電源装置のバッテリ交換表示ランプが点灯し、	蓄電池の交換を実施し
トラックスケール	ブザーが鳴動する状態となった。	た。
表示記録装置	原因は蓄電池の経年劣化によるものであった。	
水処理施設	コンプレッサーから異音が発生する状態となった。	コンプレッサーの交換を
		4.11.3.3
No. 1 - 1 反応タンク	原因はコンプレッサーの経年劣化によるものであっ	実施した。

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

3 水質及び汚泥管理状況

(1) 水質管理状況

①水質試験結果

水質日常試験及び精密試験結果を表 4-31~表 4-34、図 4-26~図 4-27に示す。 流入水は、年間平均BODが 160mg/L、SSが 200mg/L であった。流入水の汚濁濃度は概ね安定していた。

放流水は、10月から12月にかけて活性汚泥の凝集性が低下したことにより、微細なフロックが多く見られ、透視度が悪化した。また、場内工事のため脱水機の運転が制限されたことから3月上旬から中旬にかけてMLSS濃度が高い値で推移したこと及び気温が急激に変化したことから終沈の汚泥の巻き上がりが発生して透視度がやや悪化したが、概ね年間を通じて良好な水質であった。

②幹線調査結果

幹線調査結果を表4-35に示す。

地点⑦、⑧で溶解性鉄含有量が検出されたが、下水道排除基準を超過することはなかった。

③反応タンク試験結果及び生物試験結果

反応タンク運転状況、反応タンク試験結果及び生物試験結果を表4-36~表4-39に、反応 タンクの管理状況を図4-28~図4-29に示す。

反応タンクは水温低下に伴う処理能力の低下に対応するため12月下旬以降から最初沈殿池の工事による使用制限が始まる1月下旬までの期間及び工事が終了した2月下旬以降から3月末日までの期間においては7池を使用し、それ以外は6池の使用とした。また、硝化抑制運転により処理を行い、さらにバルキング抑制を目的として年間を通して単段式嫌気好気法により運転を行った。

MLSSは、流入負荷や窒素処理の状況等を考慮し、 $1,500\sim1,800$ mg/Lの範囲で目標値を設定した。このような中で、MLSSは、 $1,280\sim2,390$ mg/Lの間を推移し、年間平均で 1,640mg/L となった。

SVIは、120~190mL/g の間を推移した。沈降性は年間を通し概ね良好であった。

BOD-SS負荷は月間平均で $0.10\sim0.22$ kg/kg・日、SRTは月間平均で $4.6\sim8.0$ 日で推移した。

活性汚泥中の微生物は、年間を通して活性汚泥性生物数の総数に変動があったが、割合については高く推移した。

④ 通日試験結果

通日試験結果を表4-40~表4-43、図4-30~図4-45に示す。

流入負荷は、概ね 12:00 前後と 24:00 前後に 2 回のピークが見られた。負荷が最も少ない時間帯は、朝方の 6:00~8:00 頃であった。

放流水は、11月に実施した際にはピークの24:00前後に若干水質が悪化したが、概ね安定した 良好なものであった。

(2) 汚泥管理状況

汚泥処理運転状況を表4-44に、汚泥試験測定結果を表4-45~表4-47に示す。 生汚泥については重力濃縮槽、余剰汚泥については遠心濃縮機により処理を行った。

重力濃縮槽については、汚泥性状に合わせ、運用上支障がない範囲で高濃度の汚泥となるよう界面管理を行った。この結果、重力濃縮汚泥濃度は年間平均で2.83%となった。

遠心濃縮機は、目標濃度を 4.5%に設定し、1 台の 24 時間連続運転を基本として、余剰汚泥発生量に応じて 1 台を追加運転した。なお、追加運転はピーク電力に配慮し運転を行った。この結果、機械濃縮汚泥濃度は 4.50%となった。

脱水は、年間平均 3.69%の脱水機供給汚泥を高効率型の No 2 脱水機を基本とした運転により処理を行った。高分子凝集剤は高カチオン系を使用し、脱水ケーキや分離液の状況により薬注率の調整を行った。この結果、脱水ケーキの年間発生量は 15,039.91 t、含水率は年間平均値で 73.7%となった。

なお、脱水ケーキは、51%をセメントの原料、49%を肥料原料として全量有効利用した。

(3) その他管理状況

①放流河川調査結果

放流河川調査結果を表4-48~表4-49に示す。

放流口上流の坪川橋採水地点と比較し、放流口下流の笹口橋採水地点では全窒素中に占めるアンモニア性窒素の割合が高い状況であった。坪川は年間を通して水量が少なく、河川水に占める放流水の割合が高いため、硝化抑制運転の影響を受けたためと考えられる。

②臭気測定結果

臭気測定結果(敷地境界)を表4-50に示す。

敷地境界においては、規制値以下の結果であった。

表4-31 日常試験分析結果(流入水)

項	1	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	最大	20. 5	21. 5	23. 0	25. 0	26. 5	26. 5	25. 5	23.0	20. 5	18. 0	17. 5	19. 0	26. 5
/1 1	最小	18. 0	20. 0	21. 5	23. 0	25. 5	25. 0	23. 5	21.0	18. 5	17. 5	17. 0	17. 0	17. 0
(℃)	平均	19. 2	20. 8	22. 6	24. 0	25. 9	25. 9	24. 5	22. 1	19. 5	17. 6	17. 2	17. 7	
1 1														
水素イオン濃度	最大	7. 29	7. 23	7. 16	7. 15	7. 20	7. 15	7. 16	7. 19	7. 20	7. 24	7. 25	7. 23	
	最小	7.05	7.05	7.09	7.04	7.02	7.00	7.03	7. 03	7.03	7.02	7.03	7.04	7. 00
	平均	7. 18	7. 16	7. 12	7.09	7.08	7.08	7.09	7. 12	7. 12	7. 15	7. 15	7. 16	7. 13
透 視 度	最大	5.0	5.0	5. 5	5. 5	5. 5	5. 5	5. 5	4.5	4.5	4. 5	4.5	4.5	5. 5
	最小	4.0	4.0	4. 5	4. 5	4.0	4.5	4. 5	4.0	4.0	3. 5	4.0	4.0	3. 5
(cm)	平均	4. 2	4. 5	5.0	5. 0	4. 9	4. 9	4. 7	4.3	4. 1	4. 1	4.0	4.0	4. 5
浮遊物質量	最大	240	220	210	200	200	200	220	220	220	240	230	230	240
	最小	180	180	150	170	160	160	160	170	180	180	180	190	150
(mg/L)	平均	210	200	180	180	180	170	190	200	200	210	210	210	200
生物化学的酸素要求量	最大	200	180	150	150	180	150	150	170	200	200	180	170	200
	最小	140	150	140	130	130	130	120	140	150	160	160	160	120
(mg/L)	平均	170	160	150	140	140	140	140	160	170	180	170	160	160
化学的酸素要求量	最大	120	100	100	95	92	96	100	110	110	110	110	110	120
	最小	94	90	80	80	80	80	79	87	89	92	100	92	79
(mg/L)	平均	100	97	91	88	86	88	92	98	98	100	110	100	96
大腸菌群数	最大	480	440	360	470	310	360	550	370	370	200	270	500	550
	最小	51	88	61	120	41	97	85	140	100	47	60	70	41
(千個/cm³)	平均	240	280	240	290	230	210	270	250	210	130	190	300	240

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表 4 - 3 2 日常試験分析結果(放流水)

項	Ш	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水 温	最大	21. 5	22. 5	24.0	26. 0	27.0	27. 5	26. 5	24.0	21.0	18.0	18.0	20.0	27. 5
	最小	19. 0	21.0	22.5	24.0	26. 5	26.0	24. 0	21.5	19.0	17. 5	17.5	18.0	17. 5
(℃)	平均	20. 2	21.6	23.5	24. 9	26. 7	26. 7	25. 2	22.7	20. 1	17.9	17. 9	18.5	22. 2
水素イオン濃度	最大	7.05	7.05	7.03	7. 07	7.06	7.03	7.02	7.02	6. 97	6.95	6. 92	6.98	7. 07
	最小	6.86	6.81	6.89	6.89	6.80	6. 92	6.89	6.83	6.80	6.84	6. 73	6.83	6. 73
	平均	6.95	6. 98	6.99	7.00	6.96	6. 98	6.95	6.92	6.86	6.89	6.84	6.90	6. 94
透視度	最大	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
	最小	65	>100	>100	>100	>100	75	70	70	70	80	>100	75	65
(cm)	平均	89	>100	>100	>100	>100	92	85	84	81	99	>100	93	94
浮遊物質量	最大	5. 9	4. 3	4.0	3. 6	3. 3	4.0	4. 9	5. 2	5. 3	4.0	4. 4	4. 9	5. 9
	最小	3. 2	2.0	1.9	2.0	1.8	2.5	2. 9	3. 2	2. 9	2. 4	2. 2	3. 2	1.8
(mg/L)	平均	4. 3	3. 1	2.6	2.7	2. 7	3. 2	3.8	4. 1	3.8	3. 2	3. 2	4.0	3. 4
生物化学的酸素要求量	最大	3. 3	3.0	2.8	3. 0	3. 5	3. 1	3. 5	3.3	3. 4	2.5	2.6	3. 3	3. 5
	最小	1. 7	1.8	1.8	1.6	1.8	2. 2	2.0	1.8	2.0	2.3	1.9	2.4	1.6
(mg/L)	平均	2. 7	2. 4	2.3	2.4	2.4	2.8	2.6	2.7	2.8	2.4	2.3	2.9	2. 6
化学的酸素要求量	最大	13	11	10	9.8	9. 9	11	12	13	13	12	11	12	13
	最小	11	9. 2	8.9	8.7	8. 1	9. 5	9. 1	10	11	10	9.9	10	8. 1
(mg/L)	平均	11	10	9.4	9. 2	9. 4	10	11	12	12	11	10	11	11
大腸菌群数	最大	1	4	2	2	6	1	2	2	0	0	1	2	6
	最小	0	0	0	0	0	0	0	1	0	0	0	0	0
(個/cm³)	平均	0	2	1	1	1	0	1	2	0	0	1	1	1

※年最大最小平均の欄の平均については、月間平均値の平均値である。

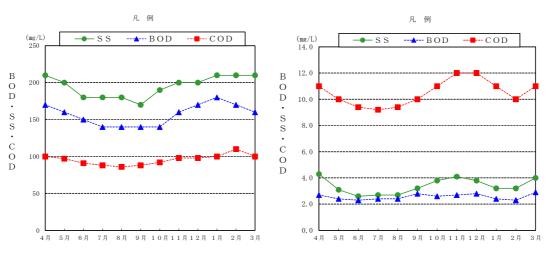


図4-26 流入水の水質変化

図4-27 放流水の水質変化

表 4-33(1) 精密試験分析結果(流入水-1)

_		衣 4	- 5 5		<u> </u>		>>次プイ	1		八八一	- I <i>)</i>				
測定項目	単位		月	5	月		月	7	月		月		月		0月
実施日	_	4	18	2	16	6	20	4	18	1	15	5	19	3	3 17
水温	$^{\circ}$ C	18.0	20.0	20.5	20.5	22.0	23.0	23.5	24.0	25. 5	26. 0	26.0	26. 5	25. 5	24. 5
透視度	c m	4.0	4.0	5.0	4. 5	5.0	5.0	5.0	5. 0	4. 5	4.0	5. 5	4. 5	5. 0	5.0
水素イオン濃度	_	7. 23	7. 24	7. 22	7. 15	7. 12	7. 13	7. 13	7.05	7. 17	7. 03	7. 14	7. 10	7.08	7.14
蒸発残留物	mg/L	580	600	540	510	520	470	480	540	510					
強熱残留物		250	280	220	220	240	230					210		220	
	mg/L							210	240	230					
溶解性物質	mg/L	340	370	330	330	310	310	330	340	290		340		320	
浮遊物質量	mg/L	220	190	190	200	180	160	170	170	200	160	160	170	180	170
アルカリ度	mg/L	190	200	185	190	182	175	185	178	178	175	180	188	188	191
生物化学的酸素要求量	mg/L	200	170	160	180	150	150	150	130	180	150	130	150	140	150
化学的酸素要求量	mg/L	110	100	100	100	90	84	90	84	92	87	80	87	91	92
アンモニア性窒素含有量	mg/L	24. 3	24. 7	24. 1	22. 9	21. 2	19. 6	19. 9	19. 4	19. 9	22. 2	16. 1	20. 3	24. 3	3 22.4
亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02	
硝酸性窒素含有量	mg/L	0. 58	0. 53	0. 56	0. 57	0. 42	0. 51	0. 52	0.31	0. 23					
		16. 2	16. 3	15. 0	15. 2	15. 4	13. 3			13. 3					
有機性窒素含有量	mg/L							14. 3	14. 3						_
室素含有量	mg/L	41.0	41.5	39. 7	38.8	36. 9	33. 4	34. 7	34. 0	33. 4	35. 0				
燐酸イオン態燐含有量	mg/L	3. 58	2. 94	3. 37	4. 11	3. 63	2. 82	2. 69	3. 18	3.60				3. 45	_
燐含有量	mg/L	6.80	5. 69	6. 17	6.87	6. 18	4. 84	5.05	5. 32	4.61	6. 26	4. 13	3.64	6.51	5.75
大腸菌群数	千個/cm ³	51	56	88	110	360	61	470	120	280	41	140	97	85	95
よう素消費量	mg/L	23	31	18	27	24	23	23	31	28	33	21	23	33	3 22
ノルマルヘキサン抽出物質含有量	mg/L	14	26	20	22	21	19	17	19	19	17	17	18	18	3 18
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_
フェノール類含有量	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50					_
鉄含有量		0. 18	0. 25	0. 20	0. 17	0. 18	0. 17	0. 12	0. 12	0. 11	<0.10				
	mg/L														
溶解性鉄含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10					
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10					_
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	(0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
クロム含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05			
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	
砒素及びその化合物		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					_
水銀及びアルキル水銀	mg/L														
その他の水銀化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	_	_		_	_	_	_	_	<0.002	_	_	_	_	
テトラクロロエチレン		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_		_	_	_	-	-	-	<0.0005		_		_	
有機燐化合物			_				_								
	mg/L									<0.1					
ポリ塩化ビフェニル	mg/L		_	<0.0005		_	_	_	_	<0.0005		_	_	_	_
ジクロロメタン	mg/L		_	<0.02		_	_	_	_	<0.02		_	_	_	_
四塩化炭素	mg/L	_	_	<0.002	_	_	_	_	_	<0.002	_	_	_	_	_
1,2-ジクロロエタン	mg/L	_	_	1	_	_	_	_	_	<0.004	_	_	_	_	_
1, 1-ジクロロエチレン	mg/L	_	_	_	_	_	_	_	_	<0.02	_	_	_	_	_
シス1,2-ジクロロエチレン	mg/L	_	_	_	_	_	_	_	_	<0.04	_	_	_	_	_
1, 1, 1-トリクロロエタン	mg/L	_	_	_	_	_	_	_	_	<0.001	_	_	_	_	_
1, 1, 2-トリクロロエタン	mg/L		_	_		_	_	_	_	<0.006	_	_	_	_	_
1,3-ジクロロプロペン	mg/L		_				_		_	<0.002			_	_	_
		_				_									
チウラム	mg/L		_						_	<0.006	-	\vdash	_	_	_
シマジン	mg/L		_	_		_	_	_	_	<0.003		_	_	_	_
チオベンカルブ	mg/L		_	_		_	_	_	_	<0.02		_	_	_	_
ベンゼン	mg/L	_	_	<0.01	_	_	_	_	_	<0.01	_	_	_	_	_
セレン及びその化合物	mg/L	_		<0.01	_				_	<0.01	-	-	_		_
ほう素及びその化合物	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	-		-		
アンモニア性窒素、亜硝酸性窒素															
	m~/T	940	0.5 0	0/ 7	99 5	01 6	90 1	20 4	10 7	20 1	90 0	10 4	90.7	94 7	
及び硝酸性窒素含有量	mg/L	24. 9	25. 2	24. 7	23. 5	21.6	20. 1	20. 4	19. 7	20. 1	22.8	16. 4	20. 7	24. 7	22. 7

表 4-33(2) 精密試験分析結果(流入水-2)

		衣 4 -	- ა ა	(Z)			澳刀 型		(小に)		<u>Z)</u>			П
測定項目	単位		1月		2月		月		月		月	最大	最小	平均
実施日		7	21	5	19	9		5	20	6	19	_		_
水温	$^{\circ}\! \mathbb{C}$	23.0	22.0	20.5	19.0	18.0	17.5	17.5	17.0	17.0	17. 5	26. 5	17. 0	21. 4
透視度	c m	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4. 5	4.0	5. 5	4.0	4. 5
水素イオン濃度	_	7. 12	7. 17	7. 16	7. 10	7. 10	7. 23	7. 25	7. 21	7. 22	7. 12	7. 25	7. 03	7. 15
蒸発残留物	mg/L	480	520	490	510	510	550	540	540	480	550	600	470	520
強熱残留物	mg/L	230	230	200	220	260	210	230	200	230	240	280	200	230
溶解性物質	mg/L	270	310	250	320	310	330	340	280	300	340	370	250	320
浮遊物質量	mg/L	190	210	200	200	210	210	210	220	200	210	220	160	190
アルカリ度	mg/L	185	188	190	185	185	195	192	195	188	188	200	175	187
生物化学的酸素要求量	mg/L	160	170	200	190	180	200	180	160	160	160	200	130	160
化学的酸素要求量	mg/L	97	94	100	110	100	110	100	110	99	98	110	80	96
アンモニア性窒素含有量	mg/L	21. 3	23. 3	22. 0	22. 5	22.8	23. 5	22. 2	23. 0		22. 0	24. 7	16. 1	21. 9
亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02
硝酸性窒素含有量	mg/L	0. 19	0.40	0. 51	0. 49	0.40	0. 47	0. 45	0. 58		0. 43	0. 62	0. 19	0. 44
有機性窒素含有量	mg/L	13. 1	15. 3	13. 7	15. 6	16.6	16. 7	17. 6	19. 7		18. 5	19. 7	9. 84	14. 8
窒素含有量	mg/L	34. 6	39. 0	36. 2	38. 6	39. 8	40.7	40. 2	43. 2		40. 9	43. 2	29. 4	37. 2
燐酸イオン態燐含有量	mg/L	3, 06	3. 91	3. 45	3. 81	3, 66	3. 34	3, 30	3, 55		3, 56	4. 11	2. 60	3. 36
燐含有量	mg/L	6. 08	6. 94	6. 15	6. 95	6. 38	6. 18	6. 25	6.85		6. 96	6. 96	3. 64	5. 92
大腸菌群数	f個/cm ³	210	140	100	130	100	47	60	260		350	470	3. 04	150
よう素消費量	十個/cm ⁻ mg/L	34	25	23	26	23	25	29	25		20	34	18	25
ノルマルヘキサン抽出物質含有量	mg/L	14	21	13	18	23	20	29	24		21	26	13	19
シアン化合物		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L													
	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50	<0.50
鉄含有量	mg/L	0. 14	0. 16	0. 16	0. 24	0. 28	0. 27	0. 26	0. 19		0.30	0.30	<0.10	0. 16
溶解性鉄含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10			<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	<0.10	0. 13	0. 15	<0.10	<0.10		<0.10	0. 15	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.41	0. 25	<0.10		<0.10	0.41	<0.10	<0.10
鉛及びその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
クロム含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀 その他の水銀化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	_	_	_	_	_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
テトラクロロエチレン		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005			<0.0005
アルキル水銀化合物	mg/L	_	_	_	_	_	_	<0.0005	_	_	_	<0.0005	<0.0005	
有機燐化合物	mg/L	_	_	_	_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	<0.0005	_	_	_	_		<0.0005		_	_	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	<0.02	_	_	_		_	<0.02		_	_	<0.02	<0.02	<0.02
四塩化炭素	mg/L	<0.002	_	_	_		_	<0.002		_	_	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	-	_	_	_	_	_	<0.004		_	_	<0.004	<0.002	<0.002
1,1-ジクロロエチレン	mg/L	_	_	_	_		_	<0.004		_	_	<0.02	<0.02	<0.02
シス1,2-ジクロロエチレン	mg/L	_	_	_	_		_	<0.02	_	_	_	<0.02	<0.04	<0.02
1, 1, 1-トリクロロエタン	mg/L	_	_		_		_	<0.001			_	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン		_	_	_	_		_	<0.001	_		_	<0.001	<0.001	<0.001
1, 1, 2-トリクロロエタン 1, 3-ジクロロプロペン	mg/L	-	_	_	_		_				_			
•	mg/L	_	_	_	_		_	<0.002			_	<0.002	<0.002	<0.002
チウラム シマジン	mg/L			_	_			<0.006		_	_	<0.006 <0.003	<0.006 <0.003	<0.006
	mg/L	_	_	_	_		_	<0.003						<0.003
チオベンカルブ ベンゼン	mg/L	/0.01		_	_			<0.02				<0.02	<0.02	<0.02
	mg/L	<0.01	_	_	_		_	<0.01				<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	<0.01					- (1.0	<0.01			- /: -	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10		<0.10	<0.10	<0.10	<0.10
ツルーフ州空主 エルドルルウェ										1				
アンモニア性窒素、亜硝酸性窒素 及び硝酸性窒素含有量	${\rm mg}/{\rm L}$	21.5	23. 7	22.5	23. 0	23. 2	24. 0	22. 6	23.6	22. 5	22. 4	25. 2	16. 4	22. 4

表 4-34(1) 精密試験分析結果(放流水-1)

			4 - 3		, 1 /			分析紹					1		ı	
測定項目	単位	水質基準	4			月		月		月	8			月	1 (
実施日	_		4	18	2	16	6	20	4	18	1	15	5	19	3	17
水温	$^{\circ}$ C		19.0	21.0	21.5	21.5	23.0	24. 0	24. 5	25. 0	26. 5	27. 0	26.5	27. 5	26. 5	25. 5
透視度	c m		75	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	90	90	85
水素イオン濃度	_	5.8~8.6	6.94	7.05	6. 98	6. 99	7. 00	6. 91	7.05	6. 93	7.04	6.87	6. 92	7. 01	6. 95	6.95
蒸発残留物	mg/L		300	310	270	260	270	220	260	270	240	270	290	250	250	260
強熱残留物	mg/L		220	250	200	200	240	200	210	220	220	200	200	180	190	220
溶解性物質	mg/L		290	300	270	250	260	220	250	270	230	240	280	240	240	250
浮遊物質量	mg/L	40 (30)	5. 4	4. 2	3. 6	3.3	2.8	3. 1	2. 1	3. 5	2.7	2.3	2.7	4.0	3. 9	4. 3
アルカリ度	mg/L		178	196	178	180	178	162	173	162	166	162	170	174	172	175
生物化学的酸素要求量	mg/L	15 (15)	2. 9	1. 7	1.8	1.9	2.3	1.8	3.0	1.6	1.8	1.8	3.0	2. 2	2.0	2. 0
化学的酸素要求量	mg/L		13	11	11	11	9.7	9.0	9.3	9. 1	9.4	9. 7	9.5	11	10	11
アンモニア性窒素含有量	mg/L		22. 4	22. 3	22. 4	20.9	19.8	17. 2	18.0	17. 1	17.1	18. 1	20.4	14. 9	18.0	21. 1
亜硝酸性窒素含有量	mg/L		0.07	0.07	0.07	0.05	0.07	0.05	0.04	0.02	0.11	0.49	0.35	0.36	0.20	0.13
硝酸性窒素含有量	mg/L		<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	0.40	0. 29	<0.16	0. 22	0.86
有機性窒素含有量	mg/L		0.74	1.82	1.41	1. 26	1. 22	0.89	1.06	1. 25	1.65	1. 28	1. 52	1.40	2. 51	1.69
窒素含有量	mg/L		23. 3	24. 1	24. 0	22.4	21.2	18. 3	19. 2	18.4	19.0	20.3	22.5	16.8	20.9	23.8
燐酸イオン態燐含有量	mg/L		0.34	0.37	0.37	0.37	0.30	0.38	0.49	0.44	0.31	0. 21	0.47	0. 25	0.43	0.49
燐含有量	mg/L		0.68	0. 56	0.58	0.60	0.47	0. 53	0.64	0.60	0. 59	0.35	0.56	0.49	0.69	0.73
大腸菌群数	個/cm ³	1,000	0	0	0	0	1	1	2	0	0	6	0	0	1	1
よう素消費量	mg/L		<5	8	<5	<5	<5	7	<5	7	<5	<5	<5	7	7	6
ノルマルヘキサン抽出物質含有量	mg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	不検出	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
クロム含有量	mg/L	0. 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物 水銀及びアルキル水銀	mg/L	0.05	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
その他の水銀化合物	mg/L	0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	0.1	Ι	_	_	_	-	_	_	ı	<0.002	l	l	_	_	_
テトラクロロエチレン	mg/L	0.1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	不検出	_	_	_	_	_	_	_	-	<0.0005	-	_	_	_	_
有機燐化合物	mg/L	不検出	_	_	_	_	_	_	_	_	<0.1	_	_	_	_	_
ポリ塩化ビフェニル	mg/L			<0.0005												
ジクロロメタン	mg/L	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
四塩化炭素	mg/L	0.02		<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		<0.002
1,2-ジクロロエタン	mg/L	0.04	_	_	_	_	_	_	_	_	<0.004	_	_	_	_	_
1,1-ジクロロエチレン	mg/L	1	_	_		_	-	_	_	_	<0.02	-	-	_	_	_
シス1,2-ジクロロエチレン	mg/L	0.4	_	_		_	_	_	_	_	<0.04	_	_	_	_	_
1,1,1-トリクロロエタン	mg/L	3		_		_	-	_	_	_	<0.001	_	_	_	_	_
1,1,2-トリクロロエタン	mg/L	0.06	_	_	_	_	_	_	_	_	<0.006	_	_	_	_	_
1,3-ジクロロプロペン	mg/L	0.02	_	_	_	_		_	_	_	<0.002	_	_	_	_	
チウラム	mg/L	0.06		_	_	_		_	_	_	<0.006	_	_	_	_	
シマジン	mg/L	0.03	_	_		_	_	_	_	_	<0.003	_	_	_	_	_
チオベンカルブ	mg/L	0. 2	-	-	-	-	-	-	-	-	<0.02	-	-	-	-	-
ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物 アンモニア、アンモニウム化合物、亜硝	mg/L	1	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10
がせるが、アンセニリム化合物、亜硝酸化合物及び硝酸化合物	mg/L	100	9.03	8. 99	9.03	8. 41	7. 99	6. 93	7. 24	6.86	6. 95	8. 13	8.80	6. 32	7. 62	9. 43
1,4-ジオキサン	mg/L	0.5	I	_	_	_		_	_	_	<0.05	_	_	_	_	_
														_		

表 4-34(2) 精密試験分析結果(放流水-2)

		衣		•	2)		八映 刀			(流水)		_		_	
測定項目	単位	水質基準		1月		2月	1	月	2	月		月	最大	最小	平均
実施日	_		7	21	5	19	9	23	5	20	6	19	_	_	_
水温	$^{\circ}$ C		23. 5	22. 5	21.0	19. 5	18.0	18.0	18.0	18.0	18.0	18.0	27. 5	18.0	22. 2
透視度	c m		>100	80	90	95	>100	>100	>100	>100	90	>100	>100	75	96
水素イオン濃度	_	5.8~8.6	6.92	6.87	6.89	6. 91	6. 94	6. 95	6.89	6. 92	6.85	6. 95	7.05	6.85	6. 95
蒸発残留物	mg/L		230	250	230	240	230	260	280	250	290	280	310	220	260
強熱残留物	mg/L		210	220	200	200	200	190	180	170	200	190	250	170	200
溶解性物質	mg/L		220	240	210	230	220	250	270	240	280	270	300	210	250
浮遊物質量	${\rm mg}/L$	40 (30)	4.0	5.0	4. 4	4.0	3.4	3.7	3.6	2.9	4.3	4.0	5. 4	2. 1	3.6
アルカリ度	mg/L		170	170	175	178	178	185	183	178	182	178	196	162	175
生物化学的酸素要求量	mg/L	15 (15)	1.8	2.5	2.0	2.6	2.3	2.3	2.0	1.9	2.4	2.6	3.0	1.6	2. 2
化学的酸素要求量	mg/L		11	12	12	12	11	11	10	10	11	11	13	9.0	11
アンモニア性窒素含有量	mg/L		19. 4	21.4	19.3	21. 2	22.5	23.4	21.2	22. 9	22.0	21.8	23. 4	14. 9	20.2
亜硝酸性窒素含有量	mg/L		0.26	0.47	0.17	0.05	<0.02	0.02	<0.02	0.05	0.12	0.16	0.49	<0.02	0.14
硝酸性窒素含有量	mg/L		<0.16	0.21	<0.16	<0.16	<0.16	<0.16	0.21	<0.16	<0.16	<0.16	0.86	<0.16	<0.16
有機性窒素含有量	mg/L		1.58	1. 27	1.04	1. 27	0.92	0.52	0.67	0.73	0.81	0.58	2.51	0.52	1.21
窒素含有量	mg/L		21. 4	23. 4	20.6	22. 4	22. 5	23. 9	22.0	23.6	23.0	22. 5	24. 1	16.8	21.6
燐酸イオン態燐含有量	mg/L		0.31	0.44	0.25	0.40	0.35	0.41	0.46	0.38	0.34	0. 33	0.49	0.21	0.37
燐含有量	mg/L		0.54	0.55	0.48	0.62	0.56	0. 68	0.64	0.64	0. 59	0.66	0.73	0.35	0.58
大腸菌群数	個/cm ³	1,000	2	2	0	0	0	0	1	0	2	1	6	0	1
よう素消費量	mg/L		6	6	7	7	<5	7	9	<5	<5	<5	9	<5	<5
ノルマルヘキサン抽出物質含有量	mg/L	10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	不検出	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
クロム含有量	mg/L	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀	mg/L	0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
その他の水銀化合物 トリクロロエチレン	mg/L	0. 1	_	_		_	_		<0.002		_	_	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002
アルキル水銀化合物	mg/L	不検出	-	-	-	-	-	-	<0.0005	-	-	-	<0.0005	<0.0005	<0.0005
有機燐化合物	mg/L		_	_	_	_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	0.003	<0.003	<0.003	<0.02	<0.02	<0.02	<0.02		<0.003	<0.02	<0.02	<0.00	<0.02	<0.00
四塩化炭素	mg/L	0. 02		<0.002	<0.002	<0.002		<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	0. 02	-	-	-	-	-	-	<0.002	-	-	-	<0.004	<0.002	<0.002
1,1-ジクロロエチレン	mg/L	1	_	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
シス1, 2-ジクロロエチレン	mg/L	0. 4	_	_	_	_	_	_	<0.04	_	_	_	<0.04	<0.04	<0.04
1, 1, 1-トリクロロエタン	mg/L	3	_	_	_	_	_	_	<0.001	_	_	_	<0.001	<0.001	<0.001
1, 1, 2-トリクロロエタン	mg/L	0.06		_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	mg/L	0. 02	_	_	_	_	_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
チウラム	mg/L	0.06	_	_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
シマジン	mg/L	0. 03		_	_	_	_	_	<0.003	_	_	_	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	0. 2	_	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	10		<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	1	<0.10	<0.10	<0.10	<0.10		<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
アンモニア、アンモニウム化合物、亜硝	mg/L	100	8. 02	9. 24	7. 89	8. 53	9. 00	9. 38		9. 21	8. 92	8. 88	9. 43	6. 32	8. 31
酸化合物及び硝酸化合物															
1, 4-ジオキサン	mg/L	0. 5	_	_	_	_	_	_	<0.05	_	_	_	<0.05	<0.05	<0.05

表 4-35(1) 幹線調査分析結果-1

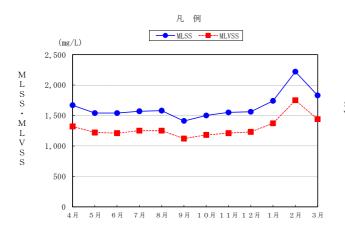
	表 4 -	- 5 5	(1)	幹級調金		1木 T I			
	測定項目	単位	排除基準	1	2	3	4	(5)	6
	採水月日			5月8日			5月8日	5月8日	
	採水時刻			9:40	\		10:20	10:50	
	カドミウム及びその化合物	mg/L	不検出	<0.001			<0.001	<0.001	
	シアン化合物	mg/L	0. 1	<0.01			<0.01	<0.01	
	有機燐化合物	mg/L	不検出	<0.1			<0.1	<0.1	
	鉛及びその化合物	mg/L	0. 1	<0.01			<0.01	<0.01	
	六価クロム化合物	mg/L	0.05	<0.01			<0.01	<0.01	
	砒素及びその化合物						<0.005		
	水銀及びアルキル水銀	mg/L	0.05	<0.005				<0.005	
	その他の水銀化合物	mg/L	0.005	<0.0005			<0.0005	<0.0005	
政	アルキル水銀化合物	mg/L	不検出	<0.0005			<0.0005	<0.0005	
	ポリ塩化ビフェニル	mg/L	0.003	<0.0005			<0.0005	<0.0005	
	トリクロロエチレン	mg/L	0. 1	<0.002			<0.002	<0.002	
令 処	テトラクロロエチレン	mg/L	0. 1	<0.0005			<0.0005	<0.0005	
	ジクロロメタン	mg/L	0. 2	<0.02			<0.02	<0.02	
TI	四塩化炭素		0. 02	<0.002			<0.002	<0.002	
で、性		mg/L							
	1,2-ジクロロエタン	mg/L	0.04	<0.004			<0.004	<0.004	
定压	1,1-ジクロロエチレン	mg/L	1	<0.02			<0.02	<0.02	
	シス1, 2-ジクロロエチレン	mg/L	0. 4	<0.04			<0.04	<0.04	
	1, 1, 1-トリクロロエタン	mg/L	3	<0.001			<0.001	<0.001	
め難	1,1,2-トリクロロエタン	mg/L	0.06	<0.006	\		<0.006	<0.006	
	1,3-ジクロロプロペン	mg/L	0.02	<0.002			<0.002	<0.002	
7 H-6	チウラム	mg/L	0.06	<0.006			<0.006	<0.006	
る物	シマジン	mg/L	0.03	<0.003			<0.003	<0.003	
	チオベンカルブ	mg/L	0. 2	<0.02			<0.02	<0.02	
物質	ベンゼン	mg/L	0. 1	<0.01			<0.01	<0.01	
	セレン及びその化合物		0. 1	<0.01			<0.01	<0.01	
		mg/L							
質	ほう素及びその化合物	mg/L	10	<1.0			<1.0	<1.0	
	ふっ素及びその化合物	mg/L	1	<0.10			<0.10	<0.10	
	1,4-ジオキサン	mg/L	0. 5	<0.05			<0.05	<0.05	
	フェノール類含有量	mg/L	1	<0.50			<0.50	<0.50	
	銅含有量	mg/L	1	<0.10			<0.10	<0.10	
	亜鉛含有量	mg/L	1	<0.10			<0.10	<0.10	
	溶解性鉄含有量	mg/L	1	<0.10			<0.10	<0.10	
	溶解性マンガン含有量	mg/L	1	<0.10			<0.10	<0.10	
	クロム含有量	mg/L	0. 5	<0.05			<0.05	<0.05	
Az	アンモニア性窒素、亜硝酸性窒素								
条 例 如	及び硝酸性窒素含有量	mg/L	380	33. 6		\	36. 0	34. 5	
例処で理	工物几丁的效形及小重	mg/L	600	260			190	190	
定可	浮遊物質量	mg/L	600	300			230	240	
め能		mg/L	30	30			20	21	
る物	水素イオン濃度	_	5~9	7.06			7. 10	7. 04	
物質	水温	$^{\circ}$ C	45	20.0			21.0	21.0	
質	よう素消費量	mg/L	220	34		\	28	30	
	台	_		微黄濁		\	微黄濁	微黄濁	
その他		mg/L		150		\	120	120	
備考	番号 幹線名	上流市町	T名	100		1	120	120	
C. tun		並崎市	J - ⊢I						
	② 釜無川1号幹線	(欠番)							
	③ 釜無川 5 号幹線	(欠番)							
	④ 釜無川1号幹線	韮崎市、	甲斐市						
				カチュロナ					
	⑤ 釜無川1号幹線		甲斐市、明	百个山甲」					
	⑥ 釜無川 4 号幹線	(欠番)							
	※②、③、⑥は、市町	村合併に	より欠悪レ	している					
	VA. A. A.Y. UL	11 II NI 1/C	あり八田 C	C (V . W)					

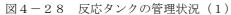
表 4 - 3 5 (2) 幹線調査分析結果 - 2

		$\times 4 - 3$	5(2)	早十7的	K则且刀	<u> </u>				
	測定項目	単位	排除基準	7	8	9	10	(1)	12	13
	採水月日			5月9日	5月9日	5月9日		5月9日		5月8日
	採水時刻			9:50	9:10	8:40		10:20		9:10
	カドミウム及びその化合物	mg/L	不検出	<0.001	<0.001	<0.001		<0.001		<0.001
	シアン化合物	mg/L	0.1	<0.01	<0.01	<0.01		<0.01		<0.01
	有機燐化合物	mg/L	不検出	<0.1	<0.1	<0.1		<0.1		<0.1
	鉛及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01		<0.01		<0.01
	六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01		<0.01		<0.01
	砒素及びその化合物	mg/L	0.05	<0.005	<0.005	<0.005		<0.005		<0.005
	水銀及びアルキル水銀	mg/L	0.005	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
	その他の水銀化合物									
政	アルキル水銀化合物	mg/L	不検出	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
	ポリ塩化ビフェニル	mg/L	0.003	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
会 処	トリクロロエチレン テトラクロロエチレン	mg/L	0. 1	<0.002	<0.002	<0.002		<0.002		<0.002
1, 1		mg/L	0. 1	<0.0005	<0.0005	<0.0005		<0.0005		<0.0005
	ジクロロメタン	mg/L	0. 2	<0.02	<0.02	<0.02		<0.02		<0.02
で理	四塩化炭素	mg/L	0.02	<0.002	<0.002	<0.002		<0.002		<0.002
	1,2-ジクロロエタン	mg/L	0.04	<0.004	<0.004	<0.004		<0.004		<0.004
定凩	1,1-ジクロロエチレン	mg/L	1	<0.02	<0.02	<0.02		<0.02		<0.02
_ \H	シス1, 2-ジクロロエチレン	mg/L	0. 4	<0.04	<0.04	<0.04		<0.04		<0.04
	1, 1, 1-トリクロロエタン	mg/L	3	<0.001	<0.001	<0.001		<0.001		<0.001
め難	1, 1, 2-トリクロロエタン	mg/L	0.06	<0.006	<0.006	<0.006		<0.006		<0.006
	1, 3-ジクロロプロペン	mg/L	0.02	<0.002	<0.002	<0.002		<0.002		<0.002
る物	チウラム	mg/L	0.06	<0.006	<0.006	<0.006		<0.006		<0.006
(2) 180	シマジン	mg/L	0.03	<0.003	<0.003	<0.003		<0.003		<0.003
	チオベンカルブ	mg/L	0.2	<0.02	<0.02	<0.02		<0.02		<0.02
物質	ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01		<0.01		<0.01
	セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01		<0.01		<0.01
質	ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0		<1.0		<1.0
貝	ふっ素及びその化合物	mg/L	1	<0.10	<0.10	<0.10		<0.10		<0.10
	1,4-ジオキサン	mg/L	0. 5	<0.05	<0.05	<0.05		<0.05		<0.05
	フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50		<0.50		<0.50
	銅含有量	mg/L	1	<0.10	<0.10	<0.10		<0.10		<0.10
	亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10		<0.10		<0.10
	溶解性鉄含有量	mg/L	1	0. 20	0. 22	<0.10		<0.10		<0.10
	溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10		<0.10		<0.10
	クロム含有量	mg/L	0. 5	<0.10	<0.05	<0.05		<0.05		<0. 10
	アンモニア性窒素、亜硝酸性窒素									
条 60 60	及び硝酸性窒素含有量	mg/L	380	30. 1	31. 2	26. 7		32. 3		30. 6
例処で理	工物几于印放尔女小里	mg/L	600	190	150	120		200		270
定可	仔班物貝里	mg/L	600	250	180	150		270		370
め能	ノルマルヘキサン抽出物質含有量	mg/L	30	22	13	14		20		32
る物	水素イオン濃度	_	5~9	7. 28	7. 26	7. 27		7. 46		7. 13
物質	水温	$^{\circ}$	45	20. 5	20.0	19. 0		19. 0		19. 0
質	よう素消費量	mg/L	220	27	22	16		24		36
その他	色	_		微黄濁	微黄濁	微黄濁		微黄濁		微黄濁
てマン他	化学的酸素要求量	mg/L		130	97	73		130		180
備考	番号 幹線名	上流市町	丁名						•	
	② 釜無川1号幹線	韮崎市、	甲斐市、四	四和町、中:	央市					
	⑧ 釜無川1号幹線	韮崎市、	甲斐市、町	四和町、中	央市、南ア	ルプス市、	富士川町			
			『町、富士』		114/	- 11-1				
			νμ1 ′ 閏 ፲/	ılμĵ						
	⑩ 富士川 1 号幹線	(欠番)								
	① 富士川 2 号幹線	市川三組	耶町							
	② 富士川 2 号幹線	(欠番)								
	③ 釜無川2号幹線	韮崎市								
			炉来し 1 ア	し、ス						
l	※⑩、⑫は、市町村台	ゴサにより	八番として	いる。						

表4-36 反応タンク運転状況

					1	1 0 0		•/ • / ½	エザイツ、レ	_				
項	目	4月	5月	6 月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
流入	最大	59, 028	58, 210	66, 725	62, 152	78, 687	64, 488	71, 458	60, 075	56, 940	54, 120	55, 945	52, 745	78, 687
下 水 量	最小	47,608	47, 076	50, 556	53, 975	51, 345	49, 485	50, 472	49, 507	48, 344	46, 458	44, 927	46, 440	44, 927
(m³/日)	平均	51, 139	51, 910	56, 015	56, 224	56, 474	54, 397	53, 826	53, 631	51, 709	50, 278	50, 294	50, 258	53, 027
反応タンク	最大	62, 390	61, 740	70, 190	65,800	82, 030	67, 990	75, 050	63, 560	60, 180	57, 550	58, 650	56, 030	82, 030
流入水量	最小	51,020	50, 560	53, 980	57, 690	54, 060	53, 060	53, 920	52,870	51, 330	49, 690	47, 570	48, 790	47, 570
(m³/日)	平均	54, 511	55, 327	59, 470	59, 794	59, 981	57, 885	57, 337	57,060	55, 019	53, 489	53, 119	53, 434	56, 386
返 送	最大	30, 371	30, 324	34, 655	32, 179	39, 950	33, 035	37, 790	31, 999	30, 746	28, 959	29, 651	28, 291	39, 950
汚 泥 量	最小	25, 827	25, 931	27, 193	28, 830	26, 477	26, 984	27, 353	27, 841	26, 185	26, 235	24, 903	24, 946	24, 903
(m³/日)	平均	27, 204	27, 637	29, 416	29, 762	29, 887	28, 907	28, 881	29, 053	28, 117	27, 430	27, 422	27, 266	28, 421
返 送	最大	50.8	51.3	50. 4	50. 3	50.7	50. 9	51. 1	52. 7	51.8	53. 2	53. 2	52. 2	53. 2
汚 泥 率	最小	48. 7	49. 1	48. 7	48. 9	47.9	48.6	49. 2	49.9	50. 2	50.3	49.8	50.3	47. 9
(%)	平均	49. 9	50.0	49. 5	49.8	49.8	49. 9	50. 4	50.9	51. 1	51.3	51.6	51.0	50.4
余 剰	最大	1, 184	1, 184	1, 300	1, 416	1, 416	1, 416	1, 269	1, 213	1, 213	1, 213	865	1, 213	1, 416
汚 泥 量	最小	1,036	1,039	652	856	772	1, 155	1,063	822	916	720	511	597	511
(m³/目)	平均	1, 114	1, 168	1, 166	1, 276	1, 229	1, 224	1, 209	1, 149	1, 118	1,036	753	1,020	1, 124
送 風 量	最大	153, 400	148, 400	138, 800	141, 100	159, 100	152, 900	139, 400	157, 100	154, 100	145, 600	154, 300	161, 300	161, 300
	最小	128, 300	115, 200	112, 400	123,000	126, 500	132, 600	117, 800	117, 100	118, 600	109, 100	130, 900	119,000	109, 100
(m³/目)	平均	140, 283	131, 665	128, 697	132, 229	141, 935	142, 077	131, 119	139, 567	131, 729	132, 903	141, 939	134, 929	135, 684
送 風	最大	2. 9	2.8	2. 6	2. 4	2.7	2. 7	2. 5	2. 9	2.6	2.8	2. 9	3.0	3.0
倍 率	最小	2. 1	1. 9	1. 7	1. 9	1.5	2.0	1. 6	2.0	2.2	2. 1	2.4	2. 2	1. 5
(倍)	平均	2.6	2.4	2. 2	2. 2	2.4	2. 5	2. 3	2.4	2.4	2.5	2.7	2.5	2. 4
滞留	最大	8.8	8.9	8.3	7.8	8.3	8. 5	8.3	8.5	10. 2	10.5	10.4	10.7	10.7
時 間	最小	7. 2	7. 3	6. 4	6.8	5. 5	6.6	6.0	7. 1	7. 7	8. 2	7. 7	9. 3	5. 5
(H r)	平均	8. 2	8. 1	7. 5	7. 5	7.5	7.8	7.8	7.9	8.2	8.4	8.4	8. 4	8.0


表4-37 反応タンク試験結果(1)


項	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
		最大	21.5	22. 5	24. 0	26. 0	27. 0	27. 5	26. 5	24. 0	21. 0	18. 5	18. 5	20. 0	27. 5
水。温	∃ ⊦	最小	19. 0	21. 0	22. 5	24. 0	26. 5	26. 0	24. 0	21. 5	19. 0	18. 0	17. 5	18. 0	17. 5
(℃)		平均	20. 2	21. 7	23. 5	24. 9	26. 7	26. 7	25. 2	22. 9	20. 2	18. 1	18. 0	18. 5	22. 2
		最大	6. 86	6. 84	6. 82	6. 83	6. 82	6. 82	6, 81	6. 78	6. 78	6. 81	6. 80	6, 91	6, 91
	1 1	最小	6. 69	6. 68	6. 72	6. 72	6. 63	6. 69	6. 70	6. 66	6. 62	6. 60	6. 62	6. 68	6. 60
	I 4	平均	6. 78	6, 78	6. 78	6. 78	6. 77	6. 75	6, 75	6. 72	6.70	6. 72	6.71	6. 77	6. 75
рΗ	\vdash	最大	6. 86	6.84	6. 76	6. 77	6. 79	6. 72	6. 73	6.71	6. 69	6. 78	6.71	6.84	6. 86
	RS	最小	6. 57	6. 63	6. 62	6. 62	6. 55	6. 58	6.60	6. 56	6. 55	6. 52	6. 51	6. 57	6. 51
	1 F	平均	6.74	6. 72	6. 71	6. 69	6. 67	6. 67	6. 66	6. 64	6. 61	6. 65	6. 62	6. 68	6. 67
		最大	0.8	0.7	0.8	0.7	0.7	0.7	0.6	0.8	1. 2	0.9	1.0	0.9	1.2
DO (mg/L)	F	最小	0.6	0.6	0.6	0.5	0. 5	0. 5	0.4	0.4	0.6	0.8	0.8	0. 7	0.4
(IIIg/L)	F	平均	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.6	0.7	0.9	0.9	0.8	0.7
	,	最大	1,850	1,710	1,730	1, 730	1,740	1,470	1,570	1,710	1,640	2,090	2, 390	2, 200	2, 390
MLSS (mg/L)	5	最小	1,530	1, 410	1,400	1, 430	1, 380	1, 280	1, 360	1, 470	1,470	1, 470	2,010	1,510	1, 280
(IIIg/L)	Ī	平均	1,670	1,540	1,540	1, 570	1, 580	1, 410	1,500	1,550	1,560	1,740	2, 220	1,830	1,640
341 370	0	最大	1, 460	1, 380	1, 340	1, 380	1, 380	1, 180	1, 240	1, 350	1, 310	1,630	1,900	1,730	1, 900
MLVS (mg/L)	5	最小	1, 210	1, 110	1, 110	1, 140	1,080	1,020	1,070	1, 140	1, 170	1, 150	1, 590	1, 190	1,020
(mg/L)		平均	1, 320	1, 220	1,210	1, 250	1, 250	1, 120	1, 180	1, 210	1, 230	1,370	1,750	1,440	1, 300
MLVSS/ML	cc	最大	80.6	80.7	80. 2	81.9	81.7	81.0	80.1	79. 2	80. 1	80.6	80.6	80. 9	81. 9
MLV55/ML (%)	22	最小	77.9	76.8	76. 9	78.0	77.8	67. 7	76. 6	77. 2	77. 3	78. 0	77.5	77. 0	67. 7
(707		平均	79.0	79. 0	78. 5	79. 5	79. 2	78. 5	78. 4	78. 2	78. 9	78. 9	78.8	78.8	78. 8
		最大	24	24	25	26	29	27	29	29	28	32	35	32	35
	1 F	最小	20	20	20	22	22	22	25	25	23	24	29	24	20
S V 3 0		平均	22	22	22	25	26	25	27	27	26	27	33	29	26
(%)	1 F	最大	95	95	93	96	96	98	98	98	99	98	99	99	99
	1 F	最小	78	77	79	89	91	90	94	90	91	93	95	93	77
	_	平均	89	90	88	92	94	94	96	95	95	96	97	97	94
	1 F	最大	140	160	160	180	190	190	190	190	180	170	160	170	190
	I 4	最小	120	130	130	140	150	170	170	160	150	150	140	140	120
SVI		平均	130	140	150	160	170	180	180	170	170	160	150	160	160
(mL/g)	1 4	最大	250	290	270	260	280	320	310	320	290	250	190	300	320
	I 4	最小	160	180	180	190	200	210	180	160	150	160	130	130	130
		平均	220	230	220	230	240	260	250	240	230	210	160	190	220
BOD-SS	L	最大	0. 20	0. 21	0. 21	0.19	0.20	0.18	0.20	0. 22	0. 21	0.20	0.16	0.15	0. 22
負		最小	0. 19	0.17	0. 16	0.16	0.14	0.17	0.16	0.15	0. 16	0.14	0.10	0.13	0.10
(kg/kg·E		平均	0.19	0.19	0. 19	0.18	0.16	0.17	0.18	0. 20	0. 19	0.17	0.13	0.14	0. 17
SRT(∃)	平均	5. 1	4. 9	5.3	4.6	5. 1	4.7	4.6	4. 9	5.4	6. 1	8.0	6. 1	5. 4

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表4-38 反応タンク試験結果(2)

								11		0 '	9	$\mathcal{N}^{\prime\prime}$	· / ~		1-110	・小口 /	- (<i></i>										
項目		4	月	5	月	6	月	7	月	8	月	9	月	1 () 月	1 :	1月	1 2	2月	1	月	2	月	3	月	最大	最小	平均
酸素利用速度	-	24. 8	22.8	22. 6	19.0	18. 4	23. 3	25.0	22. 4	25. 0	24. 7	22. 3	24. 2	26. 3	19.6	23. 1	25. 1	20.6	21. 1	19. 9	23. 0	18. 2	23.8	16. 0	16. 2	26. 3	16. 0	22. 0
Rr(mg/L·H)	ATU	21. 4	20.6	18. 9	15. 5	13. 3	18. 5	20.9	17. 9	18. 4	21. 5	15.8	16.0	22. 1	14. 2	17.9	14. 7	16. 4	15. 5	16. 7	22. 1	16.0	21. 9	14. 9	12. 5	22. 1	12. 5	17. 7
酸素利用速度	_	15. 3	14. 1	12. 7	13. 0	14.0	16. 3	14. 5	14. 0	15. 9	15. 5	15. 1	15. 5	16.9	13. 6	13. 5	15. 7	13.8	14. 7	11.4	13. 4	9.0	9.8	6.8	10. 7	16. 9	6.8	13. 6
係数Kr(mg/g・H)	ATU	13. 2	12. 7	10. 7	10.6	10. 1	12. 9	12. 1	11.2	11. 7	13. 5	10. 7	10. 2	14. 2	9.8	10.5	9.2	11.0	10. 9	9.6	12. 9	7.9	9.0	6. 3	8.3	14. 2	6.3	10.8
備考	備 考 ATU添加量10mg/L、酸素利用速度係数はMLSSによる。																											

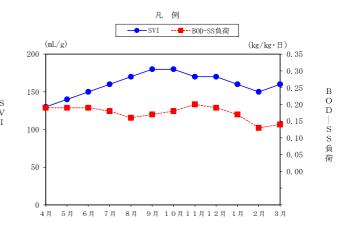
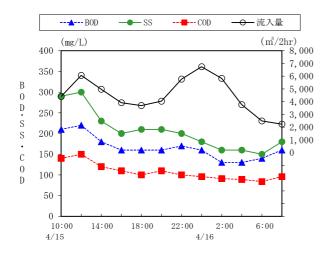


図4-29 反応タンクの管理状況(2)

表4-39 反応タンク生物試験結果


(単位:個/cm³)

					7		- //	Λ /· u · /		DAH. MOV	:/ P / I *					(+14.		
		類及び	生物名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均
	鞭	動物性	Bodo•Monas	60	50	40	50	60	100	70	80	60	150	110	210	210	40	87
原	毛虫	植物性	Peranema	140	60	50	90	30	100	110	90	250	130	150	210	250	30	118
	類	但初江	Entoshiphon	40			10		20		30		50	110	40	110	0	25
		異毛目	Spirostomum	310	290	170	40	150	590	210	60	100	170	430	750	750	40	273
		裸口目	Trachelophyllum	80	170	70	40	50	40	120	260	320	160	50	130	320	40	124
71.	繊	淋口口	Litonotus	70	100	50	40	70	30	40	200	190	90	50	230	230	30	97
生			Aspidisca	270	340	580	400	270	460	320	410	340	520	290	630	630	270	403
	毛	下毛目	Euplotes									10	20	20		20	0	4
			Chaetospira				20			20	20	30	100	50	60	100	0	25
	虫	ナスラ目	Drepanomonas		10	50	30			20						50	0	9
動	五		Vorticella	700	610	390	290	210	380	320	230	480	560	360	1,070	1,070	210	467
		縁毛目	Epistylis	1,830	2,820	3, 030	1,710	850	1,650	2, 030	1, 430	1,650	1,640	1,860	1, 480	3,030	850	1,832
	類		Opercuralia										50	50		50	0	8
		吸管虫目	Tokophrya	40	30		10	20	30	30	20	30	20	40	10	40	0	23
	根口	有 殼	Arcella	1, 220	2, 030	300	230	460	520	600	660	2, 920	1, 440	1,610	1,620	2, 920	230	1, 134
物	足虫		Pyxidicula	370	590	770	630	580	820	340	490	1, 200	1, 230	730	1, 270	1,270	340	752
	類	無殼	Amoeba	240	460	400	180	80	290	260	660	310	280	580	970	970	80	393
後	動	輪虫類	Lepadella	130	140	100	110	160	180	40	50	70	40	50	110	180	40	98
71.	d.Z	1111 27 75	Rotaria	20		20	20		40	10		20	10	30	10	40	0	15
生	物	腹毛類	Chaetonotus		280	200	60	160	260	80	70	40	50	60	210	280	0	123
そ		他の生														0	0	0
総		生 物		5, 520	7, 980	6, 220	3, 960	3, 150	5, 510	4, 620	4, 760	8,020	6, 710	6,630	9,010	9,010	3, 150	6,008
活		汚 泥 生		4, 930	7, 140	5, 610	3, 560	2,860	4, 950	4, 020	3, 470	6,890	5, 900	5, 690	7, 260	7, 260	2,860	5, 190
活	性	汚 泥 性	主生物(%)	89. 3	89.5	90. 2	89. 9	90.8	89.8	87.0	72.9	85.9	87. 9	85.8	80.6	90.8	72. 9	86.6

表 4-4 0 流入水及び放流水の経時変化(4/15~4/17)

	流入水														
	流入量		OD .	•	S	C	OD								
採水時間	(m³/2Hr)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)	濃度 (mg/L)	負荷量 (kg)								
4/15 10:00	4, 400	210	924	290	1, 276	140	616								
12:00	6,060	220	1, 333	300	1,818	150	909								
14:00	4, 970	180	895	230	1, 143	120	596								
16:00	3, 910	160	626	200	782	110	430								
18:00	3, 700	160	592	210	777	100	370								
20:00	4,040	160	646	210	848	110	444								
22:00	5, 770	170	981	200	1, 154	100	577								
4/16 0:00	6,740	160	1,078	180	1, 213	96	647								
2:00	5, 830	130	758	160	933	91	531								
4:00	3, 760	130	489	160	602	89	335								
6:00	2, 490	140	349	150	374	84	209								
8:00	2, 240	160	358	180	403	96	215								

		;	放 流	水			
	放流量	В	OD	S	SS	C	OD
採水時	間 (m³/2Hr	1/100/100	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
4/16 10:	00 4, 27	3.3	14. 1	3.5	14. 9	11	47.0
12:	00 5, 73	3.5	20.1	4.1	23. 5	11	63.0
14:	00 4, 73	3.4	16. 1	3.4	16. 1	11	52.0
16:	00 4, 11	3.6	14.8	3.8	15.6	11	45.2
18:	00 3, 67	3.7	13.6	3.2	11.7	12	44.0
20:	00 4, 05	3. 7	15.0	4.0	16. 2	12	48.6
22:	00 5, 69	4.0	22.8	3.6	20.5	12	68.3
4/17 0:	00 6, 84	4.5	30.8	5.6	38. 3	13	88.9
2:	00 5, 97	4.3	25.7	5.6	33.4	12	71.6
4:	00 3, 96	2. 5	9.9	4. 4	17.4	12	47.5
6:	00 2, 46	3.7	9. 1	4.8	11.8	12	29.5
8:	00 2, 33	3.6	8.4	4.0	9.3	11	25.6

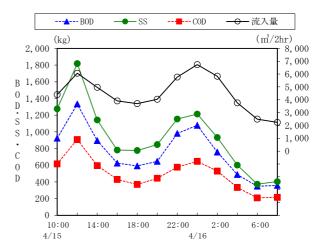
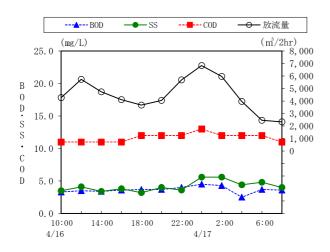
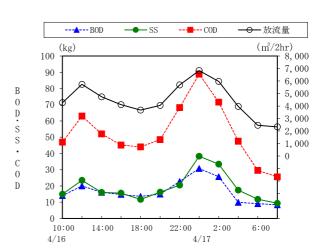



図4-30 流入水濃度の経時変化 (4/15~4/16)

図4-31 流入水負荷量の経時変化 (4/15~4/16)



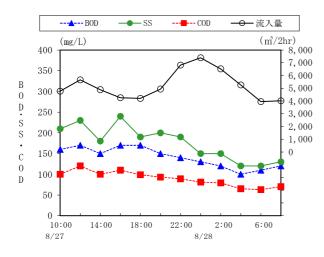
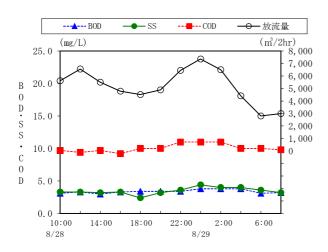

図4-32 放流水濃度の経時変化 (4/16~4/17)

図4-33 放流水負荷量の経時変化 (4/16~4/17)

表 4-4 1 流入水及び放流水の経時変化(8/27~8/29)

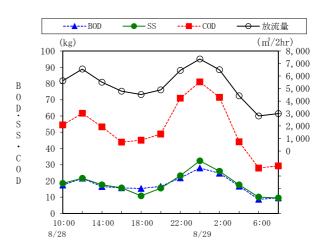
			etc 1	-l.			
		ì	充 入	水			
	流入量	Bo	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
8/27 10:00	4,770	160	763	210	1,002	100	477
12:00	5,660	170	962	230	1,302	120	679
14:00	4, 890	150	734	180	180 880		489
16:00	4, 260	170	724	240	1,022	110	469
18:00	4, 200	170	714	190	798	99	416
20:00	4, 940	150	741	200	988	93	459
22:00	6,820	140	955	190	1, 296	89	607
8/28 0:00	7, 390	130	961	150	1, 109	81	599
2:00	6, 520	120	782	150	978	79	515
4:00	5, 260	100	526	120	631	65	342
6:00	3, 950	110	435	120	474	63	249
8:00	4,020	120	482	130	523	70	281


		j	汝 流	水			
	放流量	В	OD O	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
8/28 10:00	5,620	3. 1	17.4	3.3	18.5	9.7	54. 5
12:00	6, 560	3.3	21.6	3.3	21.6	9.4	61.7
14:00	5, 500	3.0	16.5	3.2	17.6	9. 7	53.4
16:00	4, 780	3.3	15.8	3.3	15.8	9. 2	44.0
18:00	4,510	3.4	15. 3	2.4	10.8	10	45.1
20:00	4, 890	3.4	16.6	3.2	15. 6	10	48.9
22:00	6, 450	3.4	21.9	3.6	23. 2	11	71.0
8/29 0:00	7, 360	3.8	28.0	4.4	32.4	11	81.0
2:00	6, 500	3.8	24.7	4.0	26.0	11	71.5
4:00	4, 410	3.8	16.8	4.0	17. 6	10	44. 1
6:00	2,800	3. 1	8.7	3.6	10.1	10	28.0
8:00	2,990	3.2	9.6	3.2	9.6	9.8	29.3

---**_**--- BOD ---- COD —— 流入量 ---- SS $(m^3/2hr)$ (kg) 8, 000 2,000 7,000 1,800 6,000 В 1,600 5,000 0 1,400 4,000 0 1,400 D 1,200 S 1,000 • 800 3,000 2,000 1,000 800 0 C 0 600 D 400 200 10:00 14:00 18:00 22:00 2:00 6:00 8/27 8/28

図4-34 流入水濃度の経時変化 (8/27~8/28)

図4-35 流入水負荷量の経時変化 (8/27~8/28)



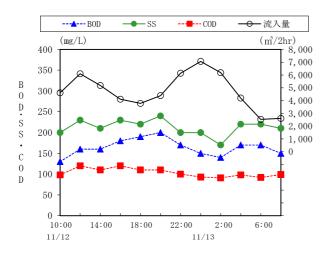

図4-36 放流水濃度の経時変化 (8/28~8/29)

図4-37 放流水負荷量の経時変化 (8/28~8/29)

表 4-4 2 流入水及び放流水の経時変化(11/12~11/14)

	流入水														
		ì	允 人	水											
	流入量	Bo	OD	S	S	CO	OD								
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量								
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)								
11/12 10:00	4,600	130	598	200	920	98	451								
12:00	6, 100	160	976	230	1,403	120	732								
14:00	5, 180	160	829	210	1,088	110	570								
16:00	4, 110	180	740	230	945	120	493								
18:00	3, 780	190	718	220	832	110	416								
20:00	4, 390	200	878	240	1,054	110	483								
22:00	6, 140	170	1,044	200	1,228	100	614								
11/13 0:00	7,060	150	1,059	200	1,412	93	657								
2:00	6, 180	140	865	170	1,051	91	562								
4:00	4, 200	170	714	220	924	98	412								
6:00	2, 530	170	430	220	557	92	233								
8:00	2,600	150	390	210	546	99	257								

		j	汝 流	水			
	放流量	В	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
11/13 10:00	4,630	3.9	18. 1	4.8	22. 2	12	55.6
12:00	6, 360	3.6	22. 9	5. 5	35.0	12	76.3
14:00	5,060	3.9	19.7	5. 5	27.8	12	60.7
16:00	4,080	3.6	14.7	5. 5	22.4	12	49.0
18:00	3, 910	4.0	15.6	5.6	21.9	13	50.8
20:00	4, 450	3. 6	16.0	4.8	21.4	13	57.9
22:00	5, 990	4.2	25. 2	6.8	40.7	13	77.9
11/14 0:00	7, 120	4.8	34. 2	7. 2	51.3	14	99.7
2:00	6, 120	4.8	29.4	7. 2	44. 1	14	85.7
4:00	4,020	4.4	17.7	6.8	27.3	13	52.3
6:00	2,770	3. 5	9.7	6.4	17.7	12	33.2
8:00	2, 470	3.8	9.4	6.4	15.8	12	29.6

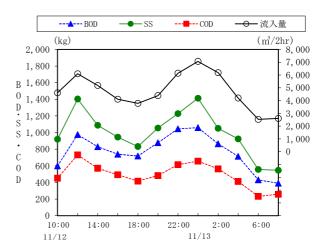
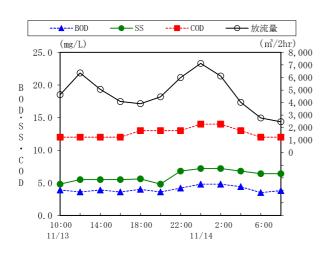


図4-38 流入水濃度の経時変化(11/12~11/13)

図4-39 流入水負荷量の経時変化(11/12~11/13)



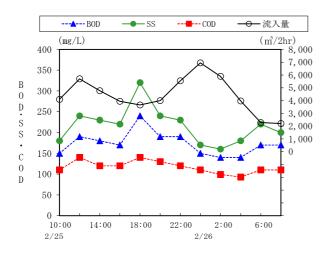

図4-40 放流水濃度の経時変化(11/13~11/14)

図4-41 放流水負荷量の経時変化 (11/13~11/14)

表 4-4 3 流入水及び放流水の経時変化(2/25~2/27)

		ì	充 入 :	水			
	流入量	В	CIC	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
2/25 10:00	4,090	150	614	180	736	110	450
12:00	5, 700	190	1,083	240	1, 368	140	798
14:00	4,770	180	859	230	1,097	120	572
16:00	3, 940	170	670	220	867	120	473
18:00	3,650	240	876	320	1, 168	140	511
20:00	3, 990	190	758	240	958	130	519
22:00	5, 540	190	1,053	230	1,274	120	665
2/26 0:00	6, 950	150	1,043	170	1, 182	110	765
2:00	5, 900	140	826	160	944	99	584
4:00	3, 970	140	556	180	715	93	369
6:00	2, 270	170	386	220	499	110	250
8:00	2, 210	170	376	200	442	110	243

		j	汝 流	水			
	放流量	В	OD O	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
2/26 10:00	3, 920	2.7	10.6	3.4	13. 3	11	43.1
12:00	5, 710	2.8	16.0	3. 7	21.1	11	62.8
14:00	4, 940	2.6	12.8	3.0	14.8	10	49.4
16:00	3, 960	2.6	10.3	2.9	11.5	11	43.6
18:00	3, 540	3. 1	11.0	2.4	8.5	11	38.9
20:00	4,060	2.8	11.4	2.4	9. 7	11	44.7
22:00	5, 710	3.0	17. 1	3.2	18.3	11	62.8
2/27 0:00	6,840	3.5	23.9	5. 2	35.6	12	82.1
2:00	5, 970	3.3	19.7	5. 6	33.4	12	71.6
4:00	3,720	3.6	13.4	4.8	17. 9	12	44.6
6:00	2, 550	3.8	9.7	5. 6	14.3	12	30.6
8:00	2, 100	3.8	8.0	4.0	8.4	12	25. 2

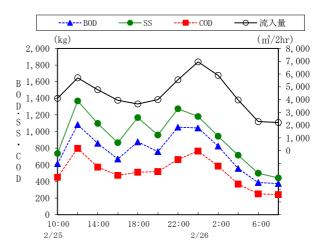
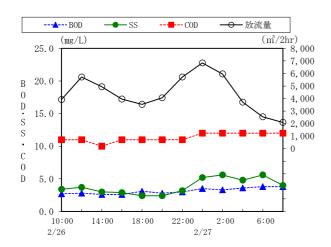



図4-42 流入水濃度の経時変化 (2/25~2/26)

図4-43 流入水負荷量の経時変化 (2/25~2/26)

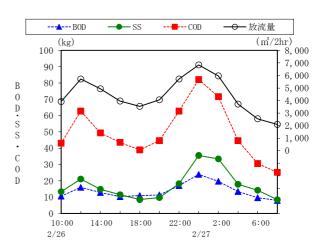


図4-44 放流水濃度の経時変化 (2/26~2/27)

図4-45 放流水負荷量の経時変化 (2/26~2/27)

表 4 - 4 4 汚泥処理運転状況

_																				
]	項	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均	計
生	j	固 形	分	(%)	0.81	0.85	0.75	0.78	0.72	0.73	0.70	0.75	0.74	0.76	0.89	0.96	0.96	0.70	0.79	_
汚	Ē	引 抜	量	(m³)	26, 275	25, 426	26, 113	26, 868	27, 586	25, 830	28, 271	26, 919	26, 401	26, 812	22, 576	22, 726	28, 271	22, 576	25, 984	311, 803
泥	j	固形物	力量	(kg)	211, 522	215, 759	196, 280	210, 132	199, 136	189, 007	197, 417	202, 191	195, 036	202, 493	201, 721	217, 250	217, 250	189,007	203, 162	2, 437, 944
重新	音	固 形	分	(%)	2.67	2. 75	2. 69	2. 90	2.84	2.80	2.86	3.02	2. 78	2. 74	3. 24	2.66	3. 24	2.66	2.83	_
力剂	5 5	爿 抜	量	(m³)	7, 732. 1	7, 643. 1	7, 097. 1	7, 071. 6	6,822.6	6, 572. 6	6, 687. 8	6, 514. 7	6, 855. 5	7, 076. 8	6, 088. 9	7, 995. 2	7, 995. 2	6, 088. 9	7,013.2	84, 158. 0
濃沥	E [固形物	力量	(kg)	206, 516	210, 424	190, 955	204, 787	193, 530	183, 807	191, 590	196, 886	190, 345	197, 756	197, 435	212, 831	212, 831	183, 807	198, 072	2, 376, 862
余	j	固 形	分	(%)	0.44	0. 48	0.49	0.49	0.48	0.45	0.49	0.54	0.50	0. 57	0.70	0.64	0.70	0.44	0.52	_
剰	Ē	爿 抜	量	(m³)	33, 422	36, 211	34, 992	39, 554	38, 100	36, 713	37, 476	34, 460	34, 655	32, 115	21,093	31, 635	39, 554	21, 093	34, 202	410, 426
泥	j	固形物	力量	(kg)	147, 077	174, 591	171, 563	193, 436	182, 344	163, 692	184, 922	171, 398	173, 777	182, 217	147,660	203, 622	203, 622	147,077	174, 692	2, 096, 299
機新	音	固 形	分	(%)	4.68	4. 32	4. 35	4. 31	4.34	4. 52	4. 31	4. 58	4. 69	4. 71	4. 46	4. 69	4.71	4. 31	4. 50	_
械涉	5 5	引 抜	量	(m³)	3, 415. 0	3, 743. 2	3, 691. 8	4, 140. 3	3, 919. 2	3, 317. 5	3, 780. 2	3, 309. 5	3, 332. 0	3, 471. 8	3, 014. 1	3, 966. 8	4, 140. 3	3, 014. 1	3, 591. 8	43, 101. 4
濃沥	E j	固形物	加量	(kg)	159, 673	161, 604	160, 608	178, 562	170, 039	150,000	163, 020	151, 461	156, 236	163, 599	134, 281	185, 914	185, 914	134, 281	161, 250	1, 934, 997
脱丝	۸	固 形	分	(%)	3.67	3. 65	3.70	3. 66	3. 61	3.60	3.62	3. 73	3. 68	3. 82	3. 89	3. 67	3. 89	3.60	3.69	_
水港	f [共 給	量	(m³)	9, 983. 8	10, 199. 6	9, 489. 4	10, 481. 9	10, 064. 1	9, 282. 5	9, 783. 0	9, 337. 9	9, 415. 1	9, 471. 4	8, 528. 8	10, 856. 5	10, 856. 5	8, 528. 8	9, 741. 2	116, 894. 0
燈派	e j	固形物	力量	(kg)	366, 189	372, 028	351, 563	383, 349	363, 569	333, 807	354, 610	348, 348	346, 582	361, 355	331, 716	398, 745	398, 745	331, 716	359, 322	4, 311, 861
	ď	農	度	(%)	0.20	0. 20	0. 20	0. 20	0.20	0.20	0. 20	0.20	0.20	0. 20	0. 20	0.20	0. 20	0. 20	0.20	_
高場分集		共 給	量	(m³)	1, 086. 1	1, 124. 2	1,007.0	1, 035. 8	1,017.6	974. 5	1, 020. 7	965. 1	1, 013. 0	1, 434. 1	1, 565. 6	1, 229. 4	1, 565. 6	965. 1	1, 122. 8	13, 473. 1
子斉		注率(%	%) No. 1	脱水機	0.72	0.77	0.78	0.73	0.77	0.72	0.72	0.76	0.78	0. 94	1.07	1.01	1. 07	0.72	0.81	_
	菜	注率(%	%) No.2	脱水機	0.56	0. 56	0.54	0.53	0.55	0. 57	0. 57	0.54	0.57	0. 55	0.45	0.51	0. 57	0.45	0.54	_
脱水	î	含水	率	(%)	73. 3	73. 4	73. 5	73. 5	72. 6	72.6	72.8	72. 9	74. 0	74. 9	76. 3	74. 9	76. 3	72.6	73. 7	_
ケー		ケー	キ量	(t)	1, 244. 84	1, 296. 10	1, 221. 19	1, 317. 79	1, 214. 46	1, 112. 43	1, 183. 79	1, 161. 95	1, 229. 43	1, 338. 21	1, 272. 56	1, 447. 16	1, 447. 16	1, 112. 43	1, 253. 33	15, 039. 91
1 +	[固形物	力量	(kg)	332, 372	344, 763	323, 615	349, 214	332, 762	304, 806	321, 991	314, 888	319, 652	335, 891	301, 597	363, 237	363, 237	301, 597	328, 732	3, 944, 788

表 4 - 4 5 汚泥中試験、汚泥返流水試験分析結果

				表 4 -	-45	157比	中試懸	や、イク:	化延/加	2水 試懸	7万7月7	宿 未					
		項目	4月	5月	6月	7月	8月	9月	10月	1 1月	12月	1月	2月	3月	最 大	最 小	平 均
	重	水素イオン濃度	5.82	5. 71	5. 50	5. 68	5. 43	5. 45	5. 50	5. 61	5. 73	5. 67	5. 56	5. 69	5.82	5. 43	5. 61
	力汚 濃泥	固形分(%)	3. 03	3. 42	3. 53	3.40	3. 21	3. 33	3. 29	3. 30	3. 14	3. 50	3. 56	3. 44	3. 56	3.03	3. 35
	縮	有機分(%)	93. 4	93. 0	93. 3	93. 1	89. 2	93.0	93. 0	93. 0	93.3	89. 0	89.6	93.8	93.8	89. 0	92. 2
\-	機	水素イオン濃度	6. 45	6. 45	6.40	6. 54	6.61	6. 53	6. 52	6. 54	6. 36	6. 55	6.40	6.48	6. 61	6. 36	6. 49
汚泥	械汚 濃泥	固形分(%)	4. 58	4. 25	4. 52	4. 37	4. 26	4. 41	4. 19	4. 52	4. 69	4. 59	4. 36	4. 72	4. 72	4. 19	4. 46
中	縮	有機分(%)	74.8	74. 2	74. 3	75. 1	76. 0	75.0	74. 7	72. 9	75.5	76. 5	75. 1	75. 2	76. 5	72.9	74. 9
試験	脱供	水素イオン濃度	6.05	6. 02	5. 87	6.05	5. 98	5. 96	5.82	5. 96	6.00	5. 94	5.86	6. 14	6. 14	5. 82	5. 97
	脱水機供給汚泥	固形分(%)	3.65	3. 63	3. 92	3.62	3.74	3. 61	3.64	3.83	3. 67	3.80	3.87	3.80	3. 92	3.61	3. 73
	機泥	有機分(%)	89. 7	88.6	88.6	88. 2	86. 2	89. 2	89. 1	88.6	89. 1	87. 6	87. 1	88.0	89. 7	86. 2	88.3
	脱り	含水率 (%)	71. 7	72. 2	70.8	73.8	72.8	71.6	71. 9	72. 1	72.0	74.8	75.0	74.6	75. 0	70.8	72.8
	水キ	有機分(%)	91. 9	91.6	91.8	91. 2	89. 0	92. 1	91.8	91.0	91.6	89. 9	89. 2	90.2	92. 1	89.0	90.9
		水素イオン濃度	6.64	6.68	6.67	6.70	6.76	6.63	6. 58	6. 58	6.64	6.64	6. 57	6.61	6.76	6. 57	6.64
	重力濃縮	アルカリ度 (mg/L)	196	198	213	189	164	189	185	185	189	178	165	175	213	164	186
	刀離	浮遊物質量 (mg/L)	270	300	290	270	270	270	270	260	240	240	260	300	300	240	270
	縮	生物化学的酸素要求量 (mg/L)	350	350	350	370	320	410	380	350	340	320	290	350	410	290	350
		化学的酸素要求量 (mg/L)	180	170	160	170	160	180	170	170	160	160	170	170	180	160	170
汚		水素イオン濃度	7.41	7. 42	7. 42	7.52	7.31	7. 35	7. 34	7. 23	7.40	7. 48	7. 34	7. 39	7. 52	7. 23	7. 38
泥返	機械濃縮	アルカリ度 (mg/L)	178	169	160	155	141	150	156	168	171	180	185	175	185	141	166
返流水試	機離	浮遊物質量 (mg/L)	480	410	350	420	370	410	650	650	560	650	750	640	750	350	530
一試	縮	生物化学的酸素要求量 (mg/L)	310	270	230	270	270	280	390	390	320	360	380	370	390	230	320
験		化学的酸素要求量 (mg/L)	190	150	140	160	160	170	220	240	200	250	280	250	280	140	200
		水素イオン濃度	6. 29	6. 41	6. 31	6.33	6. 25	6. 41	6. 20	6. 27	6. 27	6. 23	6.09	6. 23	6.41	6.09	6. 27
	₁₁₄ 分	アルカリ度 (mg/L)	366	373	364	359	390	340	360	364	330	339	296	313	390	296	350
	脱 脱 水 液	浮遊物質量 (mg/L)	780	610	620	800	750	820	850	830	930	540	730	620	930	540	740
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	生物化学的酸素要求量 (mg/L)	1, 200	870	980	1, 100	1, 300	1, 200	1, 300	1, 200	1, 200	1, 100	870	850	1, 300	850	1, 100
		化学的酸素要求量 (mg/L)	650	520	540	630	660	660	660	690	690	610	650	550	690	520	630

表 4 - 4 6 汚泥測定結果(溶出試験)

項目	単 位	5月	8月	11月	2月	最大	最 小	平均
カドミウム又はその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
有機燐化合物	mg/L	_	<0.1	_	<0.1	<0.1	<0.1	<0.1
鉛又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
六価クロム化合物	${\rm mg}/{\rm L}$	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素又はその化合物	mg/L	<0.005	0.010	0.006	0.010	0.010	<0.005	0.007
水銀又はその化合物	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
ポリ塩化ビフェニル	mg/L	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
銅又はその化合物	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛又はその化合物	mg/L	0. 29	0.25	0.43	0.46	0.46	0. 25	0.36
鉄	mg/L	0.47	0.53	0.59	0. 23	0. 59	0. 23	0.46
マンガン	mg/L	<0.10	<0.10	0.10	<0.10	0.10	<0.10	<0.10
トリクロロエチレン	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
四塩化炭素	${\rm mg}/{\rm L}$	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	_	<0.004	_	<0.004	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
シス-1,2-ジクロロエチレン	mg/L	_	<0.04	_	<0.04	<0.04	<0.04	<0.04
1, 1, 1-トリクロロエタン	mg/L	_	<0.001	_	<0.001	<0.001	<0.001	<0.001
1, 1, 2-トリクロロエタン	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
1,3-ジクロロプロペン	mg/L	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
チウラム	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
シマジン	mg/L	_	<0.003	_	<0.003	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
ベンゼン	mg/L	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
セレン又はその化合物	mg/L	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
1, 4-ジオキサン	mg/L	_	<0.05	_	<0.05	<0.05	<0.05	<0.05

表 4 - 4 7 汚泥測定結果(含有試験)

項目	単 位	5月	8月	11月	2月	最 大	最 小	平均
- 切 口	中 仏	5月	0月	11月	乙月	取 八	取小	平均
カドミウム	mg/kg	0.35	0.24	0.28	0.21	0.35	0. 21	0.27
シアン化合物	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
鉛	mg/kg	2.5	2.3	3. 2	0.45	3.2	0.45	2. 1
六価クロム	mg/kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
ひ素	mg/kg	1.4	0.76	1. 1	0.45	1. 40	0.45	0. 93
水銀	mg/kg	0.08	0.10	0.05	0.07	0.10	0.05	0.08
銅	mg/kg	100	62	82	130	130	62	94
ニッケル	mg/kg	4.0	2.6	3. 1	5. 0	5.0	2.6	3. 7
亜鉛	mg/kg	430	250	330	510	510	250	380
鉄	mg/kg	530	290	800	1,600	1,600	290	810
マンガン	mg/kg	47	19	32	43	47	19	35
クロム	mg/kg	2. 4	3. 6	4. 5	7.8	7.8	2. 4	4. 6

表 4-48 放流河川調査結果 河川名:坪川(採水地点 笹口橋[放流口下流約330m])

		1		27.1		1/10 1 1/ · 1 H/m		1 37 11 11 1		145 - 1777 - 1	.,,,	לפוען ן רייםוע					
	項目	単 位	4/11	5/15	6/13	7/11	8/14	9/12	10/11	11/14	12/12	1/16	2/13	3/13	最 大	最 小	平均
-	採水時刻		8:55	8:55	8:55	8:55	8:50	8:55	8:55	8:55	9:00	8:55	8:55	8:55	1	_	_
	水温	$_{\mathbb{C}}$	15. 5	20. 5	22. 5	23. 0	26. 5	26. 0	20. 5	20.0	16. 5	13. 5	15. 0	17.0	26. 5	13. 5	19. 7
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	7. 12	7. 18	6. 99	7. 00	6.86	7. 01	7. 21	7. 01	7. 02	7. 08	6. 99	6. 96	7. 21	6.86	7. 04
生	溶存酸素量	mg/L	8.3	6.8	5. 6	4.8	6. 4	6. 3	6. 6	6. 5	6. 7	6. 5	7. 1	6.6	8. 3	4.8	6. 5
活	生物化学的酸素要求量	mg/L	1.8	1. 7	1. 6	1. 5	1.6	1.8	1. 3	2. 2	2. 5	1. 5	1.8	2.4	2. 5	1. 3	1.8
環	化学的酸素要求量	mg/L	7. 4	8. 0	8. 2	7.4	8.0	8. 1	6. 5	8.7	10	9. 4	8. 9	10	10	6. 5	8. 4
境	浮遊物質量	mg/L	4.0	3. 3	2. 5	3.9	4.6	4. 4	4. 4	4. 2	5. 1	2.8	3. 1	3.9	5. 1	2.5	3. 8
項	大腸菌群数	個/cm ³	0	0	0	0	2	0	0	1	0	1	1	2	2	0	1
目	窒素含有量	mg/L	17. 7	15. 1	17. 0	14. 7	13. 3	16. 5	10.6	15. 5	18. 4	19. 1	17. 9	21.4	21. 4	10.6	16. 4
	燐含有量	mg/L	0.34	0. 53	0. 37	0.47	0. 22	0. 25	0.39	0.46	0. 55	0. 42	0. 53	0. 57	0. 57	0. 22	0. 43
特	アンモニア性窒素含有量	mg/L	14. 4	12. 2	14. 2	10. 3	9. 73	11. 7	7. 78	12.7	15. 1	18. 0	16. 1	19.7	19. 7	7. 78	13. 5
殊	亜硝酸性窒素含有量	mg/L	0. 10	0. 16	0. 14	0. 23	0. 18	0. 11	0. 21	0. 33	0. 16	0. 17	0.18	0. 26	0. 33	0.10	0. 19
項	硝酸性窒素含有量	mg/L	1. 69	0. 78	0.61	1. 08	0. 96	0. 98	0. 91	0.94	0.47	0. 49	0.43	0.44	1. 69	0.43	0.82
目	燐酸イオン態燐含有量	mg/L	0. 14	0. 30	0. 27	0. 33	0.14	0. 20	0.30	0. 31	0. 34	0. 26	0.40	0. 37	0.40	0.14	0. 28

表 4-49 放流河川調査結果 河川名:坪川(採水地点 坪川橋[放流口上流約150m])

	項目	単 位	4/11	5/15	6/13	7/11	8/14	9/12	10/11	11/14	12/12	1/16	2/13	3/13	最 大	最 小	平 均
-	- 採水時刻		9:05	9:05	9:05	9:05	9:00	9:05	9:05	9:05	9:10	9:05	9:05	9:05	-	-	_
	水温	$^{\circ}$ C	12.0	17. 0	19. 5	20. 5	25. 5	23. 5	17. 0	14. 5	6. 5	3.0	7. 0	12.0	25. 5	3.0	14.8
舟	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	-	7. 58	7. 96	8.08	7. 55	7. 97	7. 90	7. 55	7. 90	7. 69	7. 79	7.06	7. 68	8. 08	7. 06	7. 73
4	溶存酸素量	mg/L	10	10	10	7. 9	9.8	9. 3	8. 9	11	12	12	12	10	12	7. 9	10
Ťi	生物化学的酸素要求量	mg/L	0.7	0. 7	0. 9	0.8	0.9	0.5	0.6	0.6	1.4	0.9	1. 5	1.2	1. 5	0.5	0.9
ij	化学的酸素要求量	mg/L	2. 3	2. 4	2. 5	3. 0	3. 1	2.0	3. 3	1.2	2. 3	1.6	2. 8	1.6	3. 3	1. 2	2. 3
ij	芝 浮遊物質量	mg/L	1. 9	2. 6	3. 0	5.8	5. 4	5. 6	6. 4	1.9	3. 2	1.6	1. 1	2.7	6. 4	1. 1	3. 4
Ŋ	大腸菌群数	個/cm³	68	240	230	580	250	170	180	40	57	16	85	9	580	9	160
F	窒素含有量	mg/L	1. 20	1. 70	2.05	1. 22	1. 56	1. 39	1. 93	1.89	1. 27	1. 33	1. 31	1.60	2.05	1. 20	1. 54
	燐含有量	mg/L	<0.06	0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.06	<0.06	<0.06
牛	アンモニア性窒素含有量	mg/L	<0.16	<0.16	0.21	<0.16	0. 26	<0.16	<0.16	0. 37	<0.16	<0.16	<0.16	<0.16	0.37	<0.16	<0.16
死	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ŋ	可耐酸性窒素含有量	mg/L	1. 01	1. 70	1.71	1.00	1. 21	1. 12	1. 43	1. 50	1. 27	1. 33	1. 14	1.60	1. 71	1.00	1.34
Ē	燐酸イオン態燐含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

表4-50 臭気測定結果

項目	敷地	境界	
採取年月日	令和6年8月13日	令和7年2月6日	規 制 値
採取時刻	13:25	13:45	
臭気指数	<10	<10	13

V 桂川流域下水道

1 整備状況

(1) 全体計画及び現況

桂川流域下水道は、平成16年4月の供用開始より21年目を迎えている。

全体計画処理水量は23,759 m²/日、事業計画水量は17,116 m²/日であり、幹線は44.3 kmが供用開始となっている。

供用開始区域内の面積は856.18ha、人口は26,967人となっており、流入下水量は処理区域の拡大、水洗化の進捗に伴い増加傾向を示し、令和6年度平均で7,405 m²/日である。

桂川流域下水道の全体計画及び現況を表 5-1 に、桂川流域下水道事業計画図を図 5-1 に、関連公共下水道市別水洗化状況を表 5-2 に、市別流入下水量を表 5-3 に示す。

表5-1 全体計画及び現況

項目	目 全体計画 事業計画				供用開	始区域		
	(計画年次:平成	5年~令和13年)	(計画年次:平成	(5年~令和7年)				
	計画面積	計画人口	計画面積	計画人口	面積	人口		
市町村名	(ha)	(人)	(ha)	(人)	(ha)	(人)		
富士吉田市	106. 90	3, 230	47. 08	1, 440	36. 02	1, 362		
都 留 市	553. 10	14, 950	320. 00	9, 260	257. 39	8, 289		
大 月 市	423. 80	9, 040	271.80	6, 270	173. 09	4, 191		
上野原市	507. 80	13, 100	360. 00	11,030	316. 03	10, 885		
西 桂 町	101. 00	2, 940	100. 43	3, 120	73. 65	2, 240		
合 計	1, 692. 60	43, 260	1, 099. 31	31, 120	856. 18	26, 967		
計画処理水量 (日最大)	23, 759	m³/目	17, 116	m³∕∃	_			
下水排除方式		分流式						
処 理 方 式	標準活性汚泥法							
幹線延長	₹ 47.9 km 46.6 km			6 km	管理延長	44.3 km		
ポンプ場数	2 筐	2 箇所 2 箇所 2 箇所						

[※]供用開始区域の面積、人口及び幹線延長は、令和7年4月1日現在の値を示す。

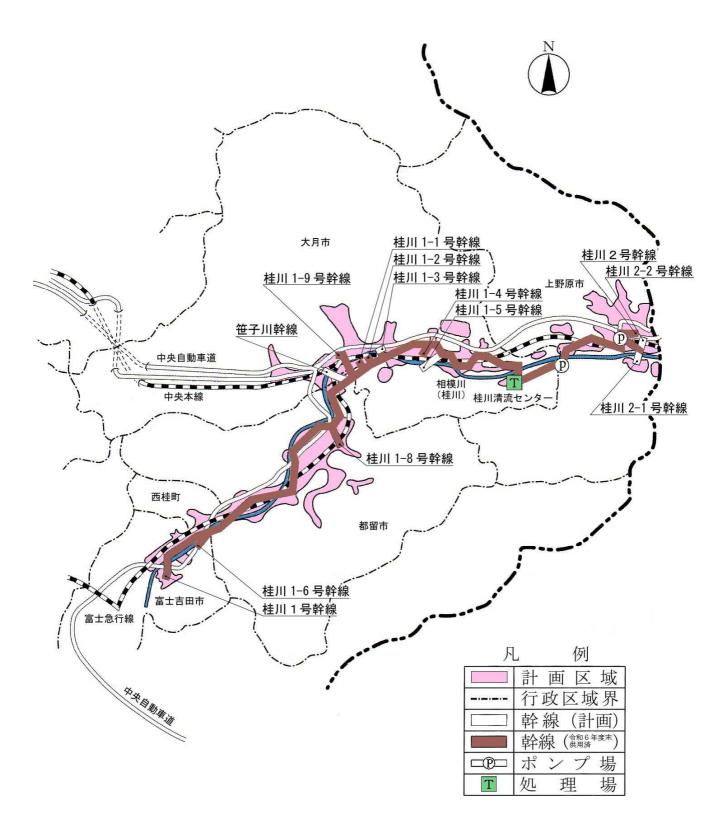


図5-1 桂川流域下水道事業計画図

表 5 - 2 関連公共下水道市町別水洗化状況

	令	和 6 年 度	末			
項目	行政	処理区域	水洗化	普及率	水洗化率	接続戸数
市町名	人口	内人口	人口			
	A (人)	В (人)	C (人)	B/A (%)	C/B (%)	累計 (戸)
富士吉田市	6, 765	1, 362	876	20. 1	64. 3	420
都留市	28, 046	8, 289	5, 222	29. 6	63. 0	2, 607
大 月 市	21, 153	4, 191	2,846	19.8	67. 9	1, 184
上野原市	21, 036	10, 885	9,077	51. 7	83. 4	4, 162
西桂町	3, 844	2, 240	1,725	58. 3	77. 0	692
計	80, 844	26, 967	19, 746	33. 4	73. 2	9, 065

- 注1) 行政人口は、令和7年3月31日現在の住民基本台帳の人口を示す。
- 注2) 処理区域内人口は、供用開始区域内人口を表し、令和7年4月1日公示分を含む。
- 注3) 富士吉田市の行政人口については、富士北麓流域分を除いた人口を示す。

表 5 - 3	市町別流入	下水量
10 0	ししょ ピコンカコカルフ マー	

表 5 - 3 市町別流入下水量									(単位: m	³)				
市町名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合 計	月平均
富士吉田市	15, 317	15, 706	15, 692	15, 702	15, 277	14, 861	16, 678	16, 226	18, 652	18, 813	16, 564	16, 804	196, 292	16, 358
都留市	68, 635	70, 151	67, 872	68, 832	66, 296	64, 730	69, 395	67, 086	69, 589	70, 583	67, 478	69, 139	819, 786	68, 316
大月市	24, 395	26, 553	26, 970	27, 046	26, 207	26, 254	27, 872	26, 182	28, 078	28, 979	26, 558	26, 419	321, 513	26, 793
上野原市	95, 775	98, 934	101, 821	99, 902	102, 028	95, 975	99, 679	96, 095	95, 808	94, 915	85, 968	97, 255	1, 164, 155	97, 013
西桂町	17, 661	16, 934	16, 982	16, 954	16, 263	15, 795	17, 142	16, 335	17, 199	16, 043	14, 387	19, 524	201, 219	16, 768
合 計	221, 783	228, 278	229, 337	228, 436	226, 071	217, 615	230, 766	221, 924	229, 326	229, 333	210, 955	229, 141	2, 702, 965	225, 247
日平均	7, 393	7, 364	7, 645	7, 369	7, 293	7, 254	7, 444	7, 397	7, 398	7, 398	7, 534	7, 392	年間日平均	7, 405

(2) 施設整備状況

令和6年度末の状況については、以下のとおりである。

①桂川清流センター

水処理使用可能池数としては、最初沈殿池1/2池、反応タンク1/2池、最終沈殿池1/2池となっており、処理能力は $15,000 \, \text{m}^3/1$ 日である。

桂川清流センターの全体平面図を図5-2に、フローシートを図5-3に、建築構造物概要を表5-4に、水処理機械設備概要を表5-5に、汚泥処理機械設備概要を表5-6に、電気設備概要を表5-7に、単線結線図を図5-4に、システム系統図を図5-5に示す。

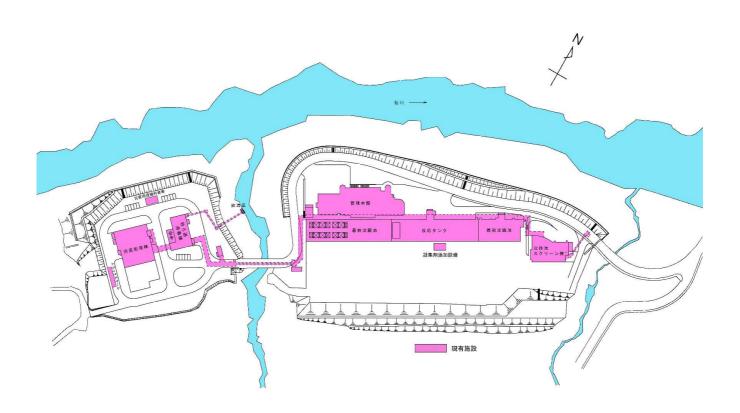


図5-2 桂川清流センター全体平面図

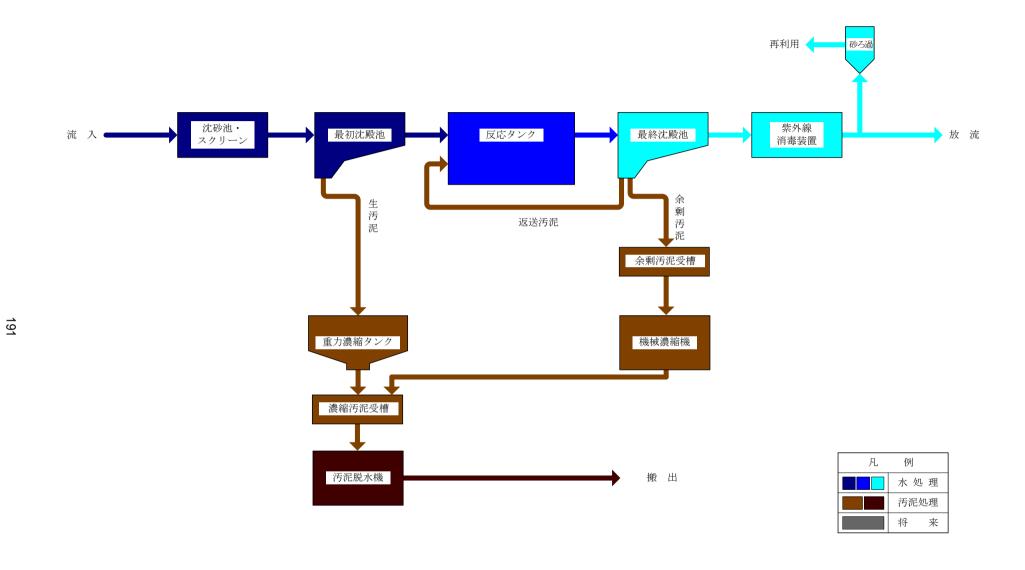


図5-3 桂川清流センターフローシート

表5-4 桂川清流センター建築構造物概要

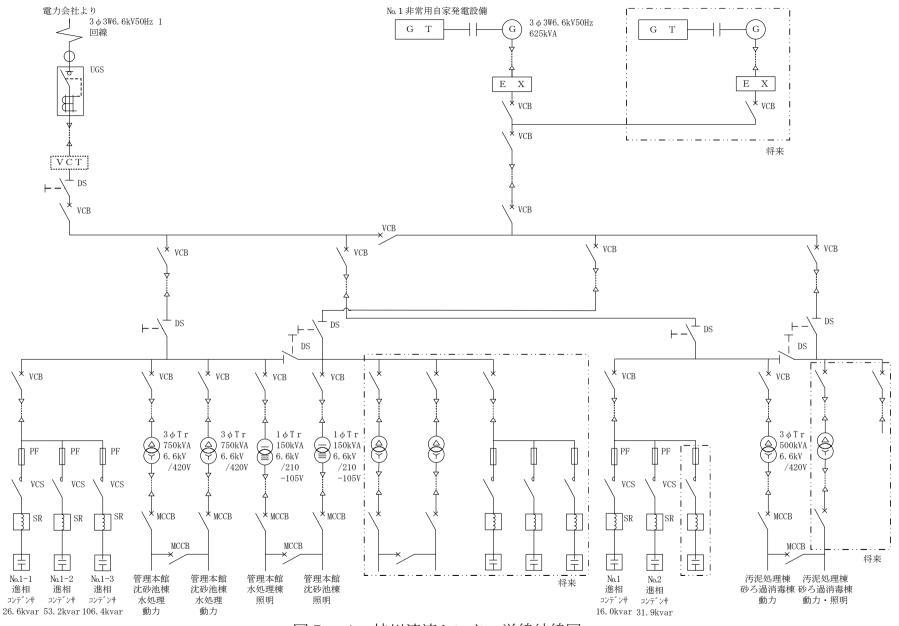
項目 施設	構造及び概要
管 理 本 館	R C 造 地下 1 階、地上 3 階 建築面積 1,545 ㎡ 延床面積 4,621 ㎡ 自家発電機室、ブロワー室、中央試験室、事務室、会議室、食堂、展示ホール、
沈砂池スクリーン棟	電気室、中央管理室、その他 RC造 地下1階、地上2階 建築面積 625㎡ 延床面積 1,175㎡ ポンプ室・脱臭機室、スクリーン室・搬出作業室、電気室、その他
水 処 理	R C 造 地上 2 階 建築面積 307 ㎡ 延床面積 246 ㎡ 階段室、電気室、換気ファン室
砂ろ過・消毒棟	R C造 地下 1 階、地上 1 階 建築面積 433㎡ 延床面積 637㎡ 滅菌機室、U V 動力盤室、電気室、その他
汚泥処理棟	R C 造 地下 1 階、地上 2 階 建築面積 975 ㎡ 延床面積 2,514 ㎡ ポンプ室、電気室、薬品注入機室、脱臭機スペース、遠心濃縮機室、搬出作業室、 脱水機室、ホッパー室、その他

表5-5 桂川清流センター水処理機械設備概要

項目	構 造 及 び 能 力	現有設備
設備		1 水路
	幅1.5m×採3.0m×投2.3m(1 水給自たり) 流入ゲート(角形外ネジ式鋳鉄製)	1 / / / / / / / / / / / / / / / / / / /
	幅0.8m×高0.8m	
	粗目スクリーン (バースクリーン)	2基(予備1基)
	幅1.5m×据付高3.3m×目幅75mm	乙巫 (1)帰1巫)
	揚砂装置(ジェットポンプ式)	1 基
	$\phi 100 \times 1.0 \text{m}^3 / \text{min} \times 15 \text{m}$	1 🗷
	集砂装置(ジェットノズル式)	1 基
	$\phi 32 \text{ A} \times 300 \text{L/min} \cdot \text{II} \times 12 \text{II} \times 0.98 \text{MPa}$	1 25
	加圧水ポンプ(横軸多段渦巻ポンプ)	2台(予備1台)
	$\phi 150 \times 3.0 \mathrm{m}^3 / \mathrm{min} \times 85 \mathrm{m} \times 75 \mathrm{kW}$	
	沈砂分離機(スクリューコンベヤ形受水槽付)	1 台
	槽容量6.4㎡ コンベヤ機長7.5m×3.7kW	
	沈砂ホッパー(電動開閉式)	1 基
	容量 7 m³×2.2kW×2	_
Mark No.	細目自動除塵機 (単一レーキ間欠式自動除塵機)	1 基
沈砂スクリーン	幅1.5m×深3.5m×目幅20mm×1.5kW	
設備	No.1 し渣搬出機 (傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長10.2m 輸送量36m³/h×20m/min×1.5kW	
	No.2 し渣搬出機 (傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長10.8m 輸送量36m³/h×20m/min×1.5kW	
	し渣洗浄機(機械撹拌式)	1 基
	処理能力 1 m³∕h×槽寸法0.85m×3.4m×1.5m	
	No.3 し渣搬出機(傾斜トラフ形ベルトコンベヤ)	1 台
	幅600mm×長3.9m 輸送量36㎡/h×20m/min×1.5kW	
	初沈スカム分離機(回転ドラム式スクリーン)	1 基
	$1.5\mathrm{m}^3/\mathrm{min}\ imes 0.75\mathrm{kW}$	
	し渣脱水機(スクリュープレス式)	1 基
	$1 \text{ m}^3 / \text{h} \times 5.5 \text{kW} + 0.4 \text{kW}$	
	No.4 し渣搬出機 (コルゲートサイド形ベルトコンベヤ)	1 台
	幅600mm×長5.8m×6.6m×10m/min×1.5kW	
	し渣ホッパー(電動開閉式)	1 基
	容量 5 m ³ ×0.75kW×2	
	幅4.1m×長25.7m×深3m×2水路 632m³(1池当たり)	1 池
	初沈汚泥掻寄機(フライト付ダブルチェーンコンベヤ)	1 基
	幅4.1m×機長22m×0.62m/min×0.4kW(1水路1駆動)	
	初沈汚泥掻寄機(ノッチチェーン式)	1 基
最初沈殿池	幅4.1m×機長22m×0.63m/min×0.4kW(1 水路 1 駆動)	0 ++
設 備	初沈スカムスキマー(電動回転式パイプスキマー)	2 基
	φ 300×4, 300mm×0. 2kW (1 水路 1 駆動)	
	生汚泥ポンプ(吸込スクリュー付汚泥ポンプ)	2台(予備1台)
	φ 100× 1 m³/min× 9 m×3. 7kW 加速スカルを光ポンプ (無理事スカル・、週巻水中ポンプ)	1 4
	初沈スカム移送ポンプ(無閉塞スクリュー渦巻水中ポンプ)	1 台
	φ 150×1.5m³/min×12m×5.5kW	

項目 設備	構造及び能力	現有設備
PS VIII	幅8.6m×長60.4m×深10m 5,049㎡(1池当たり)	1 池
	(ステップエアレーション可)	
	No.1-1反応タンク散気装置	
反応タンク	曝気装置 (軸流オープン型機械撹拌式)	
設 備	送風量10.4~11.4N m³/min×11kW	3 台
	送風量13.1~14.0N m³/min×15kW	2 台
	消泡水ポンプ (片吸込渦巻ポンプ)	2台(予備1台)
	ϕ 150/ ϕ 100×2.0 m³/min×30 m×18.5kW	
	凝集剤貯留槽(立型円筒型貯留槽)	1 基
	容量 10 m³	
	凝集剤注入ポンプ (一軸ネジ式ポンプ)	2台(予備1台)
凝集剤添加	ϕ 15×0.092~0.888L/min×0.2MPa×0.4kW	
設 備	アルカリ剤貯留槽(立型円筒型貯留槽)	1 基
	容量 4 m ³	
	アルカリ剤注入ポンプ(一軸ネジ式ポンプ)	2台(予備1台)
	φ 15×0.046~0.446L/min×0.2MPa×0.4kW	
送風機設備	送風機 (歯車増速式単段ターボブロワ)	2台(予備1台)
	φ 250/ φ 200× 61 m³/min×60.8kPa×100kW	
	幅4.1m×長(上層50.3m+下層64.0m)×深3.5m×2水路	
	3,279㎡ (1池当たり)	1 池
	終沈汚泥掻寄機(上層階用) (フライト付ダブルチェーンコンベヤ)	2 基
	幅4.1m×機長46.3m×0.3m/min×0.4kW(1水路1駆動)	
	終沈汚泥掻寄機(下層階用)(フライト付ダブルチェーンコンベヤ)	2 基
	幅4.1m×機長66.0m×0.3m/min×0.75kW(1水路1駆動)	
	終沈スカムスキマー(上層階用)(電動回転式パイプスキマー)	2 基
最終沈殿池	φ 300×4, 300mm×0. 2kW (1 水路 1 駆動)	
設備	終沈スカムスキマー(下層階用)(電動回転式パイプスキマー)	2 基
	φ 300×2, 400mm×0. 2kW (1 水路 1 駆動)	
	返送汚泥ポンプ(吸込スクリュー付汚泥ポンプ)	2台(予備1台)
	$\phi 300/\phi 250 \times 10.6 \text{m}^3/\text{min} \times 10 \text{m} \times 30 \text{kW}$	0 4 (マ烘1 4)
	余剰汚泥ポンプ(吸込スクリュー付汚泥ポンプ)	2台(予備1台)
	φ100×1 m³/min×10m×5.5kW ぬかっわりねとせいって(無関策スなり) 、 週光水内せいつ)	1 4
	終沈スカム移送ポンプ(無閉塞スクリュー渦巻水中ポンプ) φ150×1.5㎡/min×15m×7.5kW	1 台
	φ150×1.5m/m1n×15m×1.5kw 幅0.5m×長1.8m×深1.2m 1.1m³(1水路当たり)	2 水路
紫外線	幅U.5mへ長1.8mへ休1.2m 1.1m (1 水路ヨたり) 紫外線消毒装置(低圧水銀ランプ)	2 基 (予備1基)
消毒設備	系外線 (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
17 平以岬	ル壁水量 15,000 m/ ロ φ29mm×U字型ランプ長1.29m×1.3kW/本×18本	
	砂ろ過棟給水ユニット (圧力式給水ユニット)	1 台
	最大使用量1.7㎡/min×使用圧力0.49~0.57MPa×15kW×2	I I
用水設備	水処理系給水ユニット (圧力式給水ユニット)	1 台
	最大使用量1.4㎡/min×使用圧力0.49~0.74MPa×11kW×2	1 H
	-WW-17-17-17-17-17-17-17-17-17-17-17-17-17-	l

項目 設備	構 造 及 び 能 力	現有設備
	砂ろ過水槽	2 槽
	幅2.7m×長5.6m×深約3.0m 約45㎡(1槽当たり)	
	機械用水槽	2 槽
	幅3.4m×長3.5m×深約3.8m 約45㎡(1槽当たり)	
用水設備	砂ろ過塔(移動式上向流連続砂ろ過塔)	1 塔
一	800~1, 200 m³/日	
	原水ポンプ (片吸込渦巻ポンプ)	2台(予備1台)
	$\phi 100/\phi 80 \times 0.9 \mathrm{m}^3/\mathrm{min} \times 14 \mathrm{m} \times 3.7 \mathrm{kW}$	2台(予備1台)
	ろ過水移送ポンプ (横軸斜流渦巻きポンプ)	
	φ150/φ100×2.3m³/min×21m×15kW	
	沈砂池スクリーン棟脱臭ファン(FRP製片吸込ターボファン)	1 台
脱臭設備	φ 375×60 m³/min×2.16kPa×5.5kW	
灰 段 加	沈砂池スクリーン棟活性炭吸着塔(FRP製上向流式角形吸着塔)	1 塔
	カートリッジ式三層吸着 60㎡/min	


表5-6 桂川清流センター汚泥処理機械設備概要

75 17		1	
項目 設備	構造及び能力	現有意	没 備
	生汚泥スクリーン (回転ドラム式スクリーン)	1	基
	1 m³∕min×0.4kW		
	生汚泥スクリーンかす脱水機(スクリュープレス式)	1	基
	処理能力 0.25 t ∕h × (2.2+0.4) kW		
	汚泥スクリーンかすホッパー (電動開閉式鋼鉄製)	1	基
重力濃縮設備	容量 3.0 m³×0.75kW×2		
里刀張椭取佣	重力濃縮タンク	1	槽
	φ7m×深4m 154m (1槽当たり)		
	汚泥掻寄機(円形中央駆動懸垂式)	1	基
	φ 7 m×水深 4 m×0. 4kW		
	重力濃縮汚泥移送ポンプ (一軸ネジ式ポンプ)	2台(予例	備1台)
	ϕ 100×3. 7~11. 2 m ³ / h×10 m×3. 7kW		
	余剰汚泥スクリーン (回転ドラム式スクリーン)	1	基
	処理能力 1 m³/min×0.4kW		
	余剰汚泥スクリーンかす脱水機 (スクリュープレス式)	1	基
	処理量 0.25 t ∕ h × (2.2+0.4) kW		
	余剰汚泥受槽		
	幅 5 m×長5.1m×深約 3 m 約77㎡ (1槽当たり)	1	槽
	幅5.2m×長5.1m×深約3m 約80㎡ (1槽当たり)	1	槽
	余剰汚泥受槽撹拌機(立軸2段パドル形)	2	基
	5. 5kW		
	遠心濃縮機給泥ポンプ (機械濃縮機共用) (一軸ネジ式ポンプ)	2	台
	ϕ 125× (5 \sim 30) m ³ /h ×40 m×11kW		
	遠心濃縮機(横軸遠心濃縮機)	1	基
機械濃縮設備	処理能力10㎡∕h×(11+0.09+0.4)kW		
	機械濃縮機 (ベルト型ろ過濃縮機)	1	基
	処理能力10㎡∕h×(0.4+0.2+0.4+1.1+0.75)kW		
	凝集剤溶解タンク (鋼板製円筒立形)	2	基
	容量 1 m³		
	凝集剤供給機(容積式定量フィーダー)	1	台
	0.05∼0.2L/min×0.2kW		
	凝集剤溶解タンク撹拌機(立軸2段プロペラ形)	1	台
	0.75kW		
	凝集剤移送ポンプ (一軸ネジ式ポンプ)	2台(予例	備1台)
	ϕ 65×0.1 m ³ /min×0.04MPa×1.5kW		
	凝集剤注入ポンプ (一軸ネジ式ポンプ)	2台(予例	備1台)
	ϕ 20×2.0L/min×0.1MPa×0.2kW		

項目	構造及び能力	現有設備
設備		
	濃縮汚泥受槽	. 1-44
	幅 5 m×長5.1m×深約 3 m 約77m (1 槽当たり)	1 槽
	幅5.2m×長5.1m×深約3m 約80m (1槽当たり)	1 槽
	濃縮汚泥受槽撹拌機(立軸2段パドル形)	2 基
	7. 5kW	0 /
	汚泥脱水機給泥ポンプ (一軸ネジ式ポンプ)	2 台
	$\phi 75 \times (2.5 \sim 7.5) \text{ m}^3 / \text{h} \times 30 \text{m} \times 3.7 \text{kW}$	1 #*
	遠心脱水機(高効率型横型遠心脱水機)	1 基
	5 m³/h 動力(22+7.5+0.4)kW	1 #
	汚泥脱水機(二重円筒加圧脱水機)	1 基
	77.0kg-DS/m²·h 総合動力8.7kW	1 4
	No.1 脱水ケーキ搬出機 (水平無軸スクリューコンベヤ)	1 台
	φ 365×17. 5m×5. 5kW	1 4
┃ ┃脱水設備	No. 2 脱水ケーキ搬出機 (水平無軸スクリューコンベヤ)	1 台
加水 1年	φ 365×3.15m×3.7kW No.3 脱水ケーキ搬出機(垂直無軸スクリューコンベヤ)	1 4
	No.3 脱水ケーイ版出機(垂直無軸ヘケリューコン・ペリ	1 台
		1 台
	1 0.4 元 カラ ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 🗇
	- \$\psi 303 \ 10.3 \ 311 \ 3.3 \ 3K	2 基
	旅ぶケーキがタグ・ (鋼板表電動のタドケード) 容量 10㎡	2 巫
	薬品溶解タンク(鋼板製円筒立形)	2 基
	容量 6 m ³	
	薬品溶解タンク用撹拌機(立軸2段プロペラ形)	2 台
	3. 7kW	
	- 薬品供給ポンプ (一軸ネジ式ポンプ)	2 台
	$\phi 32 \times (7.2 \sim 22) L / \min \times 40 \text{ m} \times 0.75 \text{ kW}$	
	定量フィーダー(容積式定量フィーダー)	2 台
	$(0.68\sim2.0)$ L/min×0.4kW	
	生物脱臭塔(充填塔式生物脱臭塔)	1 塔
	処理風量 40㎡/min	
n24 台 =n. /44-	脱臭ファン(FRP製ターボファン)	1 台
脱臭設備	$\phi 250 \times 40 \mathrm{m}^3 / \mathrm{min} \times 4.31 \mathrm{kPa} \times 7.5 \mathrm{kW}$	
	活性炭吸着塔(三層吸着カートリッジ式)	1 塔
	処理風量 40 m³/min	
	返流水槽	
	幅3.7m×長5.0m×深約4m 約74㎡ (1槽当たり)	2 槽
	返流水槽撹拌機(立軸2段パドル形)	
マの44511件	7. 5kW	2 基
その他設備	返流水ポンプ (スクリュー遠心汚泥ポンプ)	
	$\phi 200 \times 3.0 \text{m}^3 / \text{min} \times 32 \text{m} \times 37 \text{kW}$	2台(予備1台)
	トラックスケール(マルチロードセル方式)	
	秤量30 t 幅3,000mm×長12,000mm	1 基

表5-7 桂川清流センター電気設備概要

設 備 名 称	形式及び仕様	現有設備
受 電 設 備	受電方式 3 ¢ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 2,300kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
変 電 設 備	モールド形乾式変圧器 動力用 3 φ 3 W×6,600 V / 420 V×750kVA 3 φ 3 W×6,600 V / 420 V×500kVA 電灯用 1 φ 3 W×6,600 V / 210 V - 105 V×150kVA	2台 1台 2台
高圧進相コンデンサ	3 φ 3 W×6, 600 V × 26. 6kvar 3 φ 3 W×6, 600 V × 53. 2kvar 3 φ 3 W×6, 600 V × 106. 4kvar 3 φ 3 W×6, 600 V × 16. 0kvar 3 φ 3 W×6, 600 V × 31. 9kvar	1台 1台 1台 1台 1台
直流電源装置	管理本館制御用 50Ah×54セル 制御弁式鉛蓄電池 管理本館非常照明用 100Ah×54セル 制御弁式鉛蓄電池 汚泥処理棟非常照明用 50Ah×54セル 制御弁式鉛蓄電池 管理本館 600Ah×54セル 制御弁式鉛蓄電池	1式 1式 1式 1式
交流無停電電源装置 非常用発電設備	汚泥処理棟 100Ah×54セル 制御弁式鉛蓄電池ガスタービン発電機545kW(741PS) 3 φ 3 W×6,600 V×625kVA始動用直流電源装置	1式 1台 1式
中央監視設備	300Ah×24セル 制御弁式鉛蓄電池 LCD装置 大型ディスプレイ プリンタ ロガーコントローラ プラントデータサーバ	3台 2式 2台 1台 1台
遠方監視制御設備	場外設備プロセスコントローラ ゲートウェイ装置 テレメータ・テレコントロール装置(親局) 帯域品目3.4kHz×4線式 保守用電話切替式 テレメータ装置(親局) 帯域品目3.4kHz×2線式 保守用電話切替式	1台 1台 4台 6台
付 帯 設 備	構内電話設備 屋内消火栓設備 自動火災警報設備 非常放送設備 TV共聴設備 エレベーター設備	1式 1式 1式 1式 1式 1式

199

図5-4 桂川清流センター単線結線図

大型ディスプレイ 2台

200

図5-5 桂川清流センターシステム系統図

②中継ポンプ場・幹線及び幹線流量計

中継ポンプ場は、全体計画2箇所全てが整備されており、幹線は、全体計画延長47.9 kmの内44.3 kmが供用開始している。また、中継ポンプ場の流量計を含めた幹線流量計設置数は7箇所となっている。

流域幹線系統図を図5-6に、流域関連公共下水道接続概要を表5-8に、中継ポンプ場の建築構造物概要を表5-9に、機械設備概要を表5-10に、電気設備概要を表5-11に、松留中継ポンプ場単線結線図を図5-7に、川合中継ポンプ場単線結線図を図5-8に、幹線概要を表5-12に、幹線付帯設備概要を表5-13に、幹線流量計測設備概要を表5-14に示す。

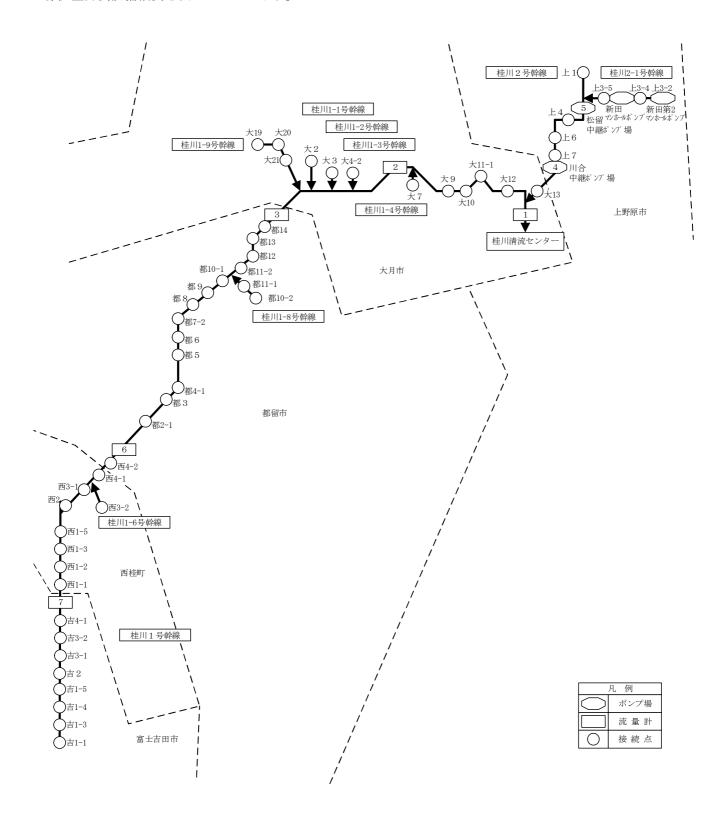


図5-6 流域幹線系統図

表 5 - 8 流域関連公共下水道接続概要

幹線名 処理分区名 供用開始年月1 面 (ha) 積 内、人 日 (人) 接続市町名 (人) 吉1-3 平成25年 4月 1日 6.41 178 161-3 平成25年 4月 1日 4.76 103 161-4 平成25年 4月 1日 4.76 103 6.41 178 161 178 8 103 321 151-4 平成20年 4月 1日 7.38 518 162 平成20年 4月 1日 7.38 518 163 321 151-4 平成17年 4月 1日 2.38 114 163-2 平成17年 4月 1日 2.38 114 163-2 平成17年 4月 1日 0.90 68 241 110 2.38 116 153-1 平成17年 4月 1日 0.90 68 241 110 2.30 35 160						処 理 区 域 処	理区域	
吉1-1 平成2 5年 4月 1日 4.78 103 吉1-3 平成2 5年 4月 1日 2.59 0 吉1-5 平成2 8年 4月 1日 2.59 0 吉1-5 平成2 8年 4月 1日 8.03 321 吉2 平成2 3年 4月 1日 2.58 14 吉3-2 平成1 7年 4月 1日 2.58 14 吉3-2 平成1 7年 4月 1日 2.50 85 都2-1 平成2 2年 4月 1日 2.50 85 都3 平成1 6年 4月 1日 2.50 85 都4-1 平成1 6年 4月 1日 2.50 85 都3 平成1 6年 4月 1日 39.02 1.264 都5 平成1 6年 4月 1日 39.02 1.264 都6 平成2 4年 4月 1日 6.96 241 数7-2 平成2 3年 4月 1日 6.96 241 数7-2 平成2 3年 4月 1日 11 6.96 241 数7-2 平成2 3年 4月 1日 11 6.96 241 数7-2 平成2 3年 4月 1日 11 1.69 381 本7-2 平成1 6年 4月 1日 1.30 1.68 数71 中成1 6年 4月 1日 1.1 <td< td=""><td>幹線名</td><td>処理分区名</td><td>供用開始</td><td>台年月</td><td>目</td><td>面積内</td><td>人口</td><td>接続市町名</td></td<>	幹線名	処理分区名	供用開始	台年月	目	面積内	人口	接続市町名
唐1-3 平成25年4月1日 2.88 0 吉1-4 平成25年4月1日 2.88 0 吉1-5 平成25年4月1日 2.88 0 吉2 平成20年4月1日 1.88 3321 吉3-1 平成23年4月1日 1.83 3.26 160 吉3-2 平成17年4月1日 3.25 160 古3-2 平成17年4月1日 3.25 160 古4-1 平成17年4月1日 3.25 160 古3-2 平成16年4月1日 1.82 3.83 都2-1 平成16年4月1日 1.84 146 都5 平成16年4月1日 39.02 1,264 都5 平成16年4月1日 4.44 146 都6 平成16年4月1日 1.86 383 都8 平成16年4月1日 1.80 3.83 都8 平成16年4月1日 1.66 48 都11-2 平成16年4月1日 1.61 445 都11-2 平成16年4月1日 1.61 445 都11-2 平成16年4月1日 1.61 3.33 905 本11-2 平成16年4月1日 1.60 3.03 3 本12-2 <td></td> <td>+</td> <td>#40.7<i>F</i></td> <td>4 🗆</td> <td>- H</td> <td></td> <td></td> <td></td>		+	#40.7 <i>F</i>	4 🗆	- H			
吉1-4 平成2 5 年 4月 1日 2.89 0 吉1-5 平成2 8 年 4月 1日 8.03 321 吉2 平成2 0 年 4月 1日 1.03 321 吉3-1 平成2 3 年 4月 1日 2.38 14 吉3-1 平成2 3 年 4月 1日 3.25 160 54-1 平成1 7 年 4月 1日 3.25 160 63-2 平成1 7 年 4月 1日 0.90 68 都2-1 平成2 2 年 4月 1日 1.09 68 都2-1 平成1 6 年 4月 1日 1.05 85 都3 平成1 6 年 4月 1日 1.05 85 都5 平成1 6 年 4月 1日 1.06 96 241 都6 平成2 3 年 4月 1日 1.05 98 381 都7 平成1 6 年 4月 1日 1.05 381 48 本6 平成1 6 年 4月 1日 1.05 381 48 本7 平成1 6 年 4月 1日 1.61 145 48 都1 2 平成1 6 年 4月 1日 31.33 905 48 本1 1 - 2 平成1 6 年 4月 1日 31.33 905 48 本1 1 - 2 平成1 6 年 4月 1日 35.50 329		-						
古1-5								
書2 平成20年 4月 1日 2.38 518 書3-1 平成23年 4月 1日 2.38 14 吉3-2 平成17年 4月 1日 0.90 68 哲4-1 平成17年 4月 1日 0.90 68 部2-1 平成17年 4月 1日 0.90 68 部3 平成16年 4月 1日 1.2.3 483 都4-1 平成16年 4月 1日 39.02 1,264 都5 平成16年 4月 1日 6.96 241 都7-2 平成23年 4月 1日 6.96 241 都9 平成16年 4月 1日 16.16 146 都8 平成16年 4月 1日 19.11 689 都10-1 令和 4年 4月 1日 16.61 145 都11-2 平成16年 4月 1日 16.16 145 都11-2 平成16年 4月 1日 3.20 175 都13 平成16年 4月 1日 3.20 175 都13 平成16年 4月 1日 3.33 90 1,251 大9 平成16年 4月 1日 3.33 90 1,251 大9 平成16年 4月 1日 3.50 329 1,251 大9 平成16年 4月 1日 15.50 44 1,10 3.00 63 村1-1 平成18年 4月 1日 2.58 68 68 68 西1-2 平成17年 4月 1日 3.50 68 6								
吉3-1 平成23年 4月 1日 2.38 14 吉3-2 平成17年 4月 1日 3.25 160 吉4-1 平成17年 4月 1日 0.90 68 都2-1 平成22年 4月 1日 1日 2.50 85 #4-1 平成16年 4月 1日 12.23 483 #4-1 平成16年 4月 1日 39.02 1,264 #5 平成16年 4月 1日 4.46 146 ************************************								富士吉田市
唐3-2 平成17年 4月 1日 0.90 68 64-1 平成17年 4月 1日 0.90 68 都2-1 平成16年 4月 1日 0.90 68 都3 平成16年 4月 1日 12.23 483 都4-1 平成16年 4月 1日 33.02 1,264 都5 平成16年 4月 1日 4.46 122 都6-1 平成16年 4月 1日 6.96 241 都7-2 平成24年 4月 1日 6.98 331 都8 平成16年 4月 1日 6.98 331 都9 平成16年 4月 1日 13.50 1,053 都9 平成16年 4月 1日 0.30 3 第1-2 平成16年 4月 1日 0.30 3 第12 平成16年 4月 1日 0.30 3 第12 平成16年 4月 1日 3.33 905 都13 平成16年 4月 1日 3.00 35 第14 平成16年 4月 1日 3.00 35 本14 平成16年 4月 1日 3.00 35 本14 平成16年 4月 1日 3.00 363 表12 平成16年 4月 1日 3.00 63 表11 平成16年 4月 1日 3.00 63 表11 平成16年 4月 1日 2.69 68 西1-1 平成18年 4月 1日 2.69 68 西1-1 平成18年 4月 1日 2.00 10 西1-2 平成17年 4月 1日 3.00 63 西1-3 平成17年 4月 1日 3.00 70 西1-3 平成17年 4月 1日 3.00 70 西1-3 平成17年 4月 1日 3.00 70 西1-2 平成		-						
唐4-1 平成1 7年 4月 1日 2.50 85 #32-1 平成2 2年 4月 1日 2.50 85 #33 平成1 6年 4月 1日 2.23 483 #4-1 平成1 6年 4月 1日 39.02 1,264 #5 平成1 6年 4月 1日 6.96 241 #7-2 平成2 3年 4月 1日 6.98 381 #8 平成1 6年 4月 1日 6.98 381 #8 平成1 6年 4月 1日 7.01 6.98 #81 0-1 今和 4年 4月 1日 7.01 6.98 #81 1-2 平成1 6年 4月 1日 7.01 6.98 #81 3 平成1 6年 4月 1日 7.01 6.98 #81 3 平成1 6年 4月 1日 7.01 6.98 #81 4 平成1 6年 4月 1日 7.01 6.98 #81 3 平成1 6年 4月 1日 7.03 3 #81 3 平成1 6年 4月 1日 7.03 3 #1 4 平成1 6年 4月 1日 7.03 320 #1 3 平成1 6年 4月 1日 7.03 329 #1 1 平成1 6年 4月 1日 7.03 63 #1 1 平成1 6年 4月 1日 7.03 63 #1 1 平成1 6年 4月 1日 7.03 63 #1 1 平成2 6年 4月 1日 7.03 63 #1 2 平成2 6年 4月 1日 7.03 63 #1 2		-						
## 1		-						
#3								
都4-1 平成16年 4月 1日 4.46 147 146 147 146 147 146 147 146 147 146 147 147 146 147 147 146 147 141 140 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
#5 平成16年 4月 1日 4.46 146 146								
## 1 日本								
桂川1号幹線 都7-2 平成23年 4月 1日 31.50 1,053 都宿市 村田1号幹線 平成19年 4月 1日 1日 19.11 689 新旬 10-1 合和 4年 4月 1日 1.61 145 新旬 10-1 合和 4年 4月 1日 0.30 3 3 175 新旬 11-2 平成16年 4月 1日 0.30 3 3 175 新旬 1-2 平成16年 4月 1日 3.20 175 新旬 1-2 平成16年 4月 1日 31.33 905 大旬 平成16年 4月 1日 31.33 905 大旬 平成16年 4月 1日 31.50 329 大り 平成16年 4月 1日 13.50 329 大り 平成16年 4月 1日 1.50 44 大11-1 平成18年 4月 1日 1.50 44 大11-1 平成18年 4月 1日 2.58 53 大12 平成21年 4月 1日 2.58 53 大1 平成17年 4月 1日 2.69 68 大1 平成17年 4月 1日 2.60 68 大1 平成17年 4月 1日 3.50 565 万旬 1-2 平成27年 4月 1日 3.50 565 万旬 1-2 平成27年 4月 1日 3.50 565 万旬 1-2 平成27年 4月 1日 3.50 70 万旬 1日 70 70 西1-3 平成17年 4月 1日 7.40 50 万旬 1日 7.40 50 万旬 1日 7.40 50 西4-1 平成17年 4月 1日 7.40 50 万旬 1日 7.40 50 万旬 1日 7.40 50 西4-1 平成17年 4月 1日 7.40 50 万旬 1日 7.40 50 万月 1日 7.40 50 万月 1日 7.40 50 万月 1日 7.40 50 万旬 1日 7.40 50								
桂川1号幹線 都8 平成19年 4月 1日 1日 19.11 689 都留市 4月 1日 1日 19.11 689 都留市 10-1 6和 4年 4月 1日 1日 1.61 145 本日 11-2 平成16年 4月 1日 0.30 3 3 都10-1 6和 4年 4月 1日 3.20 175 本日 12 平成16年 4月 1日 3.20 175 本日 13 30 905 本日 15 30 329 大月市 本日 16.78 本日 17 40 9 本日 17 40 9 本日 17 40 9 本日 17 40 9 本日 18 9 9								
桂川1号幹線 都9 平成16年 4月 1日 1.61 1.61 145 11 1 1.61 145 11 1 1 1 1 1 1.61 145 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
桂川1号幹線 都10-1 令和 4年 4月 1日 1日 0.30 33 都12 平成16年 4月 1日 3.20 175 都13 平成16年 4月 1日 3.20 175 都14 平成16年 4月 1日 39.99 1.251 大9 平成16年 4月 1日 13.50 329 大10 平成16年 4月 1日 1.50 44 大11-1 平成18年 4月 1日 2.58 53 大12 平成18年 4月 1日 0.30 63 西1-1 平成18年 4月 1日 0.30 63 西1-2 平成17年 4月 1日 0.30 63 西1-3 平成17年 4月 1日 0.30 63 西1-5 平成25年 4月 1日 0.20 1 西2 平成25年 4月 1日 0.20 1 西3-1 平成17年 4月 1日 1.3.55 565 西4-1 平成17年 4月 1日 3.05 170 西4-2 平成17年 4月 1日 1.0.65 565 西4-2 平成16年 4月 1日 8.63 229 大月市 桂川1-1号幹線 大2 平成16年 4月 1日 4.99 1.760 大月市 桂川1-2号幹線 大7 平成16年								411 田 111
# 1 1 - 2 平成 1 6年 4月 1 日 0.30 3 0 175 # 1 2 平成 1 6年 4月 1 日 3.20 175 # 1 3 905 # 1 4 1 日 31.33 905 # 1 4 1 日 7 平成 1 6年 4月 1 日 31.30 329 大 1 0 平成 1 6年 4月 1 日 1.50 44 大 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 							
# 1 2 平成 1 6年 4月 1 日 3.20 175 # 1 3 1 3 平成 1 6年 4月 1 日 31.33 905 # 1 4 9 平成 1 6年 4月 1 日 39.09 1,251 大9 平成 1 6年 4月 1 日 13.50 329 大1 0 平成 1 6年 4月 1 日 1.50 44 5 1 1 日 2.58 53 大1 2 平成 2 1年 4月 1 日 2.58 53 万 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
## 1 3								
## 14								
大9 平成16年 4月 1日 1.50 329 44 1.50 大10 平成16年 4月 1日 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 511 1.50 44 51 1.50								
大10 平成16年 4月 1日 1.50 44 大11-1 平成18年 4月 1日 2.58 53 大12 平成21年 4月 1日 2.69 68 西1-1 平成18年 4月 1日 0.30 63 西1-2 平成17年 4月 1日 2.80 0 西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 0.20 1 西2 平成17年 4月 1日 13.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-号特線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-号幹線 大7 平成16年 4月 1日 47.09 83 大月市 桂川1-号幹線 大7 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 大7 平成16年 4月 1日 35.46 1,138 48 桂川1-9号幹線 大7 平成16年 4月 1日 6.02 163 大月市								
大11-1 平成18年 4月 1日 2.58 53 大12 平成21年 4月 1日 2.69 68 西1-1 平成18年 4月 1日 0.30 63 西1-2 平成17年 4月 1日 0.30 63 西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 0.20 1 西2 平成25年 4月 1日 13.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-3号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-8号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 西3-2 平成16年 4月 1日 35.46 1,138 本川1-9号幹線 大19 平成16年 4月 1日 35.46 1,138 本月市 平成16年 4月 1日 9.50 286 大19 平成16年 4月 1日 9.50 286 大月市 上1 平成16年 4月 1日 16.02 56,267 大月市 上1								大月市
大12 平成21年 4月 1日 2.69 68 西1-1 平成18年 4月 1日 0.30 63 西1-2 平成17年 4月 1日 2.80 0 西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 0.20 1 西2 平成25年 4月 1日 13.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-3号幹線 大2 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大3 平成16年 4月 1日 47.09 83 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 本10-2 平成28年 7月 1日 23.64 330 大月市 桂川1-9号幹線 大9 平成16年 4月 1日 6.02 163 大月市 桂川1-9号幹線 大0 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 10.25 <								大月市
西1-1 平成18年 4月 1日 0.30 63 西1-2 平成17年 4月 1日 2.80 0 西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 1.020 1 西2 平成25年 4月 1日 13.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和6年10月3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月1日 47.09 83 大月市 桂川1-8号幹線 本7 平成19年 4月1日 16.78 590 西桂町 桂川1-8号幹線 本10-2 平成28年 7月1日 23.64 330 本留市 桂川1-9号幹線 大9 平成16年 4月1日 6.02 163 大月市 桂川1-9号幹線 大9 平成16年 4月1日 9.50 286 大1 平成16年 4月1日<								
西1-2 平成17年 4月 1日 2.80 0 西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 0.20 1 西2 平成25年 4月 1日 13.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-8号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 西3-2 平成16年 4月 1日 35.46 1,138 本日1-9号幹線 大19 平成16年 4月 1日 35.46 1,138 本日1-9号幹線 大19 平成16年 4月 1日 6.02 163 大月市 大19 平成16年 4月 1日 10.02 20 大月市 大20								
西1-3 平成17年 4月 1日 9.20 383 西1-5 平成22年 4月 1日 0.20 1 0.20 1 0.20 1 0.20 0.20 0.20 0.2								
西1-5 平成22年 4月 1日 0.20 1 百 日 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
西2 平成25年 4月 1日 3.05 565 西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 村1-1 平成16年 4月 1日 35.46 1,138 春 11-1 平成16年 4月 1日 35.46 1,138 本11-1 平成16年 4月 1日 35.46 1,138 大19 平成16年 4月 1日 35.46 1,138 大20 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 16.02 6,22 163 上1 平成16年 4月 1日 160.25 6,267 上4 平成16年 4月 1日 54.00 3,327 上6 平成19年12月 1日 54.00 3,327 上9原市							1	
西3-1 平成17年 4月 1日 3.50 170 西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 西3-2 平成16年 4月 1日 23.64 330 都留市 桂川1-8号幹線 大19 平成16年 4月 1日 23.64 1,138 新留市 桂川1-9号幹線 大19 平成16年 4月 1日 9.50 286 大月市 大19 平成16年 4月 1日 9.50 286 大月市 大20 平成16年 4月 1日 12.09 203 大月市 桂川2号幹線 大13 平成16年 4月 1日 160.25 6,267 上1 平成16年 4月 1日 54.00 3,327 上野原市 上野原市							565	西桂町
西4-1 平成17年 4月 1日 20.42 418 西4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 西3-2 平成16年 4月 1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年 4月 1日 35.46 1,138 本留市 大19 平成16年 4月 1日 6.02 163 大月市 大20 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 桂川2号幹線 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上野原市								
暦4-2 平成16年 4月 1日 7.40 50 桂川1-1号幹線 大2 平成16年 4月 1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年 4月 1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年 7月 1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年 4月 1日 35.46 1,138 本留市 桂川1-9号幹線 大20 平成16年 4月 1日 6.02 163 大月市 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 桂川2号幹線 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176								
桂川1-1号幹線 大2 平成16年4月1日 8.63 229 大月市 桂川1-2号幹線 大3 平成16年4月1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和6年10月3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年4月1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年4月1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年7月1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年4月1日 35.46 1,138 大月市 桂川1-9号幹線 大20 平成16年4月1日 6.02 163 大月市 大21 平成16年4月1日 9.50 286 大13 平成16年4月1日 12.09 203 大月市 桂川2号幹線 上1 平成16年4月1日 160.25 6,267 上4 平成19年12月1日 54.00 3,327 上6 平成18年4月1日 52.00 176								
桂川1-2号幹線 大3 平成16年4月1日 44.99 1,760 大月市 桂川1-3号幹線 大4-2 令和6年10月3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年4月1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年4月1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年7月1日 23.64 330 都11-1 平成16年4月1日 35.46 1,138 大19 平成16年4月1日 23.66 973 大20 平成16年4月1日 6.02 163 大21 平成16年4月1日 9.50 286 大13 平成16年4月1日 12.09 203 大月市 上1 平成16年4月1日 160.25 6,267 上1 平成19年12月1日 54.00 3,327 上6 平成18年4月1日 5.20 176	 							 大月市
桂川1-3号幹線 大4-2 令和 6年10月 3日 0.84 0 大月市 桂川1-4号幹線 大7 平成19年 4月 1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年 7月 1日 23.64 330 都留市 桂川1-9号幹線 本19 平成16年 4月 1日 23.66 973 大19 平成16年 4月 1日 23.66 973 大20 平成16年 4月 1日 6.02 163 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上野原市								
桂川1-4号幹線 大7 平成19年4月1日 47.09 83 大月市 桂川1-6号幹線 西3-2 平成17年4月1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年7月1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年4月1日 23.66 973 大20 平成16年4月1日 6.02 163 大21 平成16年4月1日 9.50 286 大13 平成16年4月1日 12.09 203 大月市 桂川2号幹線 上1 平成16年4月1日 160.25 6,267 上4 平成19年12月1日 54.00 3,327 上6 平成18年4月1日 5.20 176								
桂川1-6号幹線 西3-2 平成17年 4月 1日 16.78 590 西桂町 桂川1-8号幹線 都10-2 平成28年 7月 1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年 4月 1日 23.66 973 大20 平成16年 4月 1日 6.02 163 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176							+	
桂川1-8号幹線 都10-2 平成28年 7月 1日 23.64 330 都留市 桂川1-9号幹線 大19 平成16年 4月 1日 23.66 973 大20 平成16年 4月 1日 6.02 163 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176							-	
桂川1-8号幹線 都11-1 平成16年 4月 1日 35.46 1,138 大19 平成16年 4月 1日 23.66 973 大20 平成16年 4月 1日 6.02 163 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176		+					+	
桂川1-9号幹線 大19 平成16年 4月 1日 23.66 973 大月市 大20 平成16年 4月 1日 6.02 163 大月市 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176	桂川1-8号幹線							都留市
桂川1-9号幹線 大20 平成16年 4月 1日 6.02 163 大月市 大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176								
大21 平成16年 4月 1日 9.50 286 大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176	桂川1-9号幹線							大月市
大13 平成16年 4月 1日 12.09 203 大月市 上1 平成16年 4月 1日 160.25 6,267 上4 平成19年12月 1日 54.00 3,327 上6 平成18年 4月 1日 5.20 176	,							
桂川 2 号幹線 上 1 平成 1 6 年 4 月 1 日 160. 25 6, 267 上 4 平成 1 9 年 1 2 月 1 日 54. 00 3, 327 上 6 平成 1 8 年 4 月 1 日 5. 20 176							+	大月市
桂川 2 号幹線 上 4 平成 1 9 年 1 2 月 1 日 54.00 3,327 上 6 平成 1 8 年 4 月 1 日 5.20 176								2 22 ¥ 311
上6 平成18年 4月 1日 5.20 176	桂川2号幹線							[m>
								上野原市

幹線名	処理分区名	供用開始	台年月	目		域 処 理 区 域 積 内 人 口 (人)	接続市町名
	上3-2	令和 2年	6月	1 目	1.3	81 13	
桂川2-1号幹線	上3-4	平成30年	3月	1 日	6.	17 110	上野原市
	上3-5	平成16年	4月	1 日	78.	00 874	

[※]処理区域内面積及び人口は、令和7年4月1日現在の値を示す。

表5-9 中継ポンプ場建築構造物概要

項目	構造及び概要
施設	
松留	R C 造 地下 1 階、地上 3 階 建築面積 646㎡
	延床面積 1,333㎡
	ポンプ室、スクリーン室、ゲート室、自家発電機室、電気室、その他
中継ポンプ場	(酸素発生機室)
中枢がクノ物	RC造 地上1階
	建築面積 39㎡
	延床面積 39㎡
	酸素発生機室
	RC造 地下1階、地上3階
川合	建築面積 280 m²
中継ポンプ場	延床面積 678m²
	ポンプ室、流入機械室、発電機室、電気室、その他

表5-10 中継ポンプ場機械設備概要

項目 施設	構造及び能力	現有設備
	流入ゲート(角形外ネジ式鋳鉄製)	2 門
	$0.6 \mathrm{m} \times 0.6 \mathrm{m}$	
	粗目スクリーン (手掻式バースクリーン)	1 基
	水路幅 1.2m×水路深 2.0m×目幅 30mm	
	細目自動除塵機(間欠式自動除塵機)	1 基
	水路幅 1.2m×水路深 2.0m×目幅 30mm×1.5kW	
	No.1 し渣搬出機 (トラフ型ベルトコンベヤ)	1 台
	幅 500mm×長 6.0m ベルト速度 21m/min×0.75kW	
	No.2 し渣搬出機 (トラフ型ベルトコンベヤ)	1 台
	幅 500mm×長 4.6m ベルト速度 21m/min×0.75kW	
	揚砂ポンプ (水中サンドポンプ)	1 台
	$\phi 80 \times 0.5 \mathrm{m}^3 / \mathrm{min} \times 8.8 \mathrm{m} \times 3.7 \mathrm{kW}$	
松留	沈砂・し渣洗浄機(機械撹拌式)	1 基
中継ポンプ場	処理能力 0.5㎡/h	
	し渣脱水機(スクリュー式)	1 基
	処理能力 0.5 m³/h ×3.7kW	
	ポンプ井水中撹拌機(水中プロペラ式撹拌機)	4 台
	2. 0kW	
	汚水ポンプ(横軸片吸込スクリュー付無閉塞型渦巻ポンプ)	3組(予備1組)
	φ200/φ150×3.7㎡/min×48m×75kW×2台(段)	
	酸素注入設備(吸着分離方式(PAS方式))	1 式
	酸素注入量 15Nm³/h	
	脱臭ファン(FRP製ターボファン)	1 台
	$\phi 300 \times 34 \mathrm{m}^3 / \mathrm{min} \times 2.3 \mathrm{kPa} \times 3.7 \mathrm{kW}$	
	活性炭吸着塔(立型活性炭吸着塔)	1 塔
	処理風量 34㎡/min	

項目 施設	構造及び能力	現有設備
	流入ゲート (角形外ネジ式鋳鉄製)	2 門
	$0.4\mathrm{m}\times0.4\mathrm{m}$	
	細目自動除塵機(裏がき式連続自動除塵機)	1 基
	水路幅 0.8m×水路深 3.9m×目幅 20mm×0.75kW	
	し渣搬出機(スクリューコンベヤ式)	1 台
	φ300mm×長 5.0m 輸送量 2.58m³/h×0.75kW	
	し渣脱水機(二軸対向スクリュー式)	1 基
	処理能力 100L∕h×0.75kW	
	ポンプ井水中撹拌機(水中プロペラ式撹拌機)	2 台
中継ポンプ場	0.9kW	
	汚水ポンプ(横軸片吸込スクリュー付無閉塞型渦巻ポンプ)	3組(予備1組)
	φ200/φ150×5.1m³/min×35m×55kW×2台(段)	
	酸素注入設備(吸着分離方式(PAS方式))	1 式
	酸素注入量 12Nm³/h	
	脱臭ファン(片吸込ターボファン)	1 台
	$\phi 225 \times 14 \mathrm{m}^3 / \mathrm{min} \times 1.96 \mathrm{kPa} \times 1.5 \mathrm{kW}$	
	活性炭吸着塔(立型活性炭吸着塔)	1 塔
	処理風量 14㎡/min	

表5-11 中継ポンプ場電気設備概要

ポンプ場名称	設備名称	形 式 及 び 仕 様	現有設備
	受電設備	受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 1,000kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V × 500 kVA	2台
	低圧進相	$3 \phi 3 W \times 420 V \times 31.9 \text{kvar}$ $3 \phi 3 W \times 420 V \times 21.3 \text{kvar}$	1台 1台
松留	交流無停電	3 φ 3 W×420 V×53. 2kvar 50Ah×54セル 制御弁式鉛蓄電池	1台 1式
中継ポンプ場 - - - - - - - - - -		ガスタービン発電機 390kW(530PS) 3 φ 3 W×6, 600 V×375kVA	2 台
	非常用発電設備	始動用直流電源装置 400Ah×12セル 制御弁式鉛蓄電池	1式
	遠方監視 制御設備	400Ah×12セル 制御弁式鉛蓄電池(長寿命形) テレメータ・テレコントロール装置(子局) 帯域品目3.4kHz×4線式 保守用電話切替式	1式
	付帯設備	インターホン設備 自動火災警報設備	1式 1式
	受電設備	防犯設備 受電方式 3 φ 3 W×6,600 V / 50Hz×1 回線 受電設備容量 1,000kVA 受電遮断器 VCB 定格電圧 7,200 V 定格電流 600 A 定格遮断電流 12.5kA	1式
	変電設備	モールド形乾式変圧器 3 φ 3 W×6, 600 V / 420 V × 500 kVA	2台
	低圧進相コンデンサ	$3 \phi 3 W \times 420 V \times 10.6$ kvar	3台
川合	交流無停電 電 源 装 置	50Ah×54セル 制御弁式鉛蓄電池	1式
	非 常 用 発電設備	ガスタービン発電機 353kW(480PS) 3 φ 3 W×6, 600 V×300kVA 始動用直流電源装置	2台
	遠方監視	400Ah×12セル 制御弁式鉛蓄電池 400Ah×12セル 制御弁式鉛蓄電池(長寿命形) テレメータ・テレコントロール装置(子局)	1式 1台
	制御設備	帯域品目3.4kHz×4線式 保守用電話切替式 インターホン設備	1式
	付帯設備	自動火災警報設備 防犯設備	1式 1式

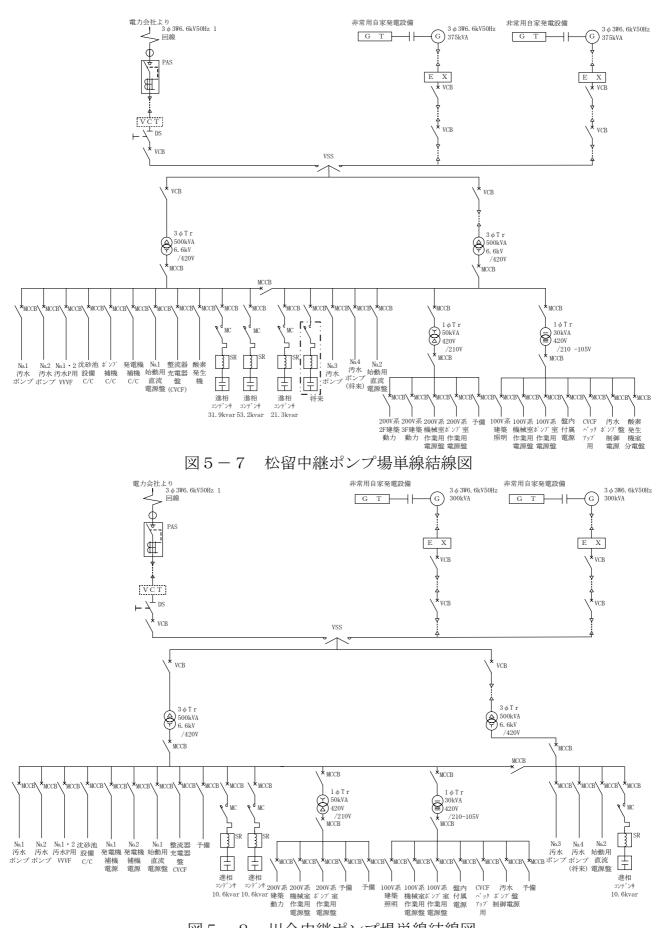


図5-8 川合中継ポンプ場単線結線図

表5-12 幹線概要

幹線名	供	用
平 旅 石	管径 (mm)	延 長 (m)
桂川 1 号幹線	300 ∼ 1,800	33, 159
桂川 1-1号幹線	1,800	286
桂川 1-2号幹線	1,800	191
桂川 1-3号幹線	1,800	209
桂川 1-4号幹線	1,800	167
桂川 1-6号幹線	250 ~ 800	107
桂川 1-8号幹線	800	74
桂川 1-9号幹線	1,350 ~ 1,800	1, 119
桂川 2 号幹線	250 ~ 900	7, 661
桂川 2-1号幹線	150 ~ 700	1, 360
合 計		44, 333

[※]供用管径及び延長は、令和7年4月1日現在の値を示す。

表 5 - 1 3 幹線付帯設備概要

幹線名	設備名称	仕様及び形式	現有設備		
	東橋水管橋	管径 900mm×2条	55.0m		
	金畑橋水管橋	桂川横断部 管径 800mm×2条	127. 5m		
		桂川横断部	205.8m		
		桂川横断部 管径 800mm×2条 127 桂川横断部 208 管径 700mm×2条 300mm×1条(初期用) 照明設備 換気・脱臭設備 ガス検知器設備 排水ポンプ設備 桂川横断部 管径 600mm×1条 54 滝入川横断部 管径 500mm×1条 15 管径 500mm×1条 12 大保呂川横断部 管径 500mm×1条 40 管径 500mm×1条 11 桂川横断部 管径 600mm×1条 60 東電放水路横断部 管径 500mm×1条 15			
		300mm×1条(初期用)			
	猿橋伏越	照明設備	一式		
桂川1号幹線			一式		
		ガス検知器設備	一式		
		排水ポンプ設備	一式		
		制水バルブ設備	一式		
	佐伯水管橋	桂川横断部 管径 600mm×1条	54. 7m		
	滝入川水管橋	滝入川横断部 管径 600mm×1条	17.8m		
	小明見水管橋	小佐野川横断部 管径 350mm×1条	15. 5m		
	金畑橋水管橋	管径 500mm×1条	15.0m		
	境橋水管橋	管径 500mm×1条	24. 5m		
	大瀧橋水管橋	大保呂川横断部 管径 500mm×1条	40.0m		
桂川2号幹線	川合下村橋水管橋	管径 500mm×1条	11.8m		
	川合橋水管橋	桂川横断部 管径 600mm×1条	60.5m		
	松留橋水管橋	東電放水路横断部 管径 500mm×1条	15.1m		
	鶴川伏越	鶴川横断部 管径 250mm×2条	148.3m		
	新巖島橋水管橋	鶴川横断部 管径 150mm×1条	85.0m		
	新田マンホールポンプ	水中汚水ポンプ	2台		
桂川2-1号幹線	初 山 ヾ ン 小 一 / レ ハ ン 丿	ϕ 100×1.482 m³/min×24.6 m×15kW			
	新田第2マンホールポンプ	水中汚水ポンプ	2台		
	利田男とマンホールホンノ	ϕ 65×0.504 m ³ /min×7.3 m×2.2kW			

※現有設備は、令和7年4月1日現在の値を示す。

表 5 - 1 4 幹線流量計測設備概要

流 量 計 番 号	設備名称	管径 (mm)			形式
1	桂川清流センター流入流量計	1,000	600	1,000	PBF、圧力式
2	猿橋伏越流量計	1,800 (馬蹄形)	1,800 (馬蹄形)	1,000	超音波、圧力式
3	都留市流量計	1,800	450 (初期対応)	500	PBF、圧力式
4	川合中継ポンプ場流量計	1	300	900	電磁式
5	松留中継ポンプ場流量計	_	250	600	電磁式
6	西桂町流量計	1, 350	300 (初期対応)	200	PBF、圧力式
7	富士吉田市流量計	600	250 (初期対応)	100	PBF、圧力式
備考	流量計番号は図5-6流域幹線系	統図中の設備	備番号を示す。		

2 施設運転管理状況

(1) 機械設備運転管理状況

①各設備の運転状況等

主要機器運転状況を表 5-1 5 に、し渣及び沈砂搬出状況を表 5-1 6 に、薬品・給水・燃料使用状況を表 5-1 7 に示す。また、中継ポンプ場運転状況を表 5-1 8 に示す。

各設備については、下記のとおり運転を行った。

ア) 沈砂池スクリーン設備

沈砂池、スクリーン設備については機械設備の整っている№3水路を使用した。除砂設備は週1回の運転とし、細目自動除塵機は1日1回の運転とした。

イ) 最初沈殿池設備

使用池数はNo.1-1-1 又はNo.1-1-2 (0.5池)の使用を基本とした。

汚泥掻寄機は24時間連続運転とした。スカムスキマーは1日1回の運転とした。生汚泥ポンプは汚泥の発生量に合わせ間欠運転とし、重力濃縮タンクへ移送した。

ウ) 反応タンク設備

使用池数は機械設備の整っているNo.1-1 (1池)の使用とした。水処理は1日3回の間欠運転とし、反応タンクのDO値、水質の状況等により運転時間の調整を行った。

曝気装置の運転は、第1槽目及び第3槽目は嫌気槽として攪拌のみとした。また、第1槽目の 曝気装置のみ24時間連続運転とし、その他の槽は水処理の時間帯に合わせて間欠運転とした。

送風機の運転は吸込風量一定制御とし、水処理の時間帯に合わせて運転を行った。なお、夏季 (7月~9月)及び冬季(12月~3月)の間の電力抑制目的を含め、吐出量を絞りやすいNo.1-1 号機のみの運転とし、月毎の使用号機の切替はしなかった。

凝集剤注入ポンプ及びアルカリ剤注入ポンプは 24 時間連続運転とし、燐除去の状況等により薬 注率の調整を行った。

工) 最終沈殿池設備

使用池数は機械設備の整っているNo.1-1-1、No.1-1-2の2水路(1池)の使用とした。

汚泥掻寄機は24時間連続運転とした。返送汚泥ポンプは水処理の運転に合わせ1日3回の間欠運転とした。返送汚泥ポンプは流入負荷変動に合わせて比率制御による運転とした。余剰汚泥ポンプは汚泥の発生状況に合わせ間欠運転を行った。スカムスキマーは1日2回の運転とした。

才)紫外線消毒設備

機械設備の整っている2水路6ユニットのうち1水路2ユニットを使用し、高出力で24時間連続運転とした。また、3箇月毎に使用水路の切替を行った。

カ)機械汚泥濃縮設備

No.2ベルト濃縮機を主に運転し、余剰汚泥を処理量 10 m³/h (定格 10 m³/h) で、汚泥の発生状況に合わせて間欠運転を行った。No.1 遠心濃縮機は週 1 回の管理運転(低速洗浄)を基本とし、月 1 回の頻度で実負荷運転を行った。

キ) 重力汚泥濃縮設備

最初沈殿池より送泥された生汚泥を希釈濃縮法により重力濃縮を行った。汚泥掻寄機の運転は連続運転とした。

ク) 汚泥脱水設備

No. 2 二重円筒加圧脱水機を主に運転し、圧入圧一定制御により処理量 $4 \sim 7$ ㎡/h(定格 5 ㎡/h)で、汚泥の発生量に合わせて間欠運転を行った。No. 1 遠心脱水機は夏季に隔週 1 回の管理運転(実負荷運転)とし、トルク一定制御により処理量 5 ㎡/h(定格 5 ㎡/h)で、汚泥の発生量に合わせて間欠運転を行った。その他季については、1 週間毎に実負荷運転と洗浄運転を交互に行った。

ケ) 脱臭設備

沈砂池スクリーン棟及び汚泥処理棟の脱臭設備については24時間連続運転とした。

コ) 関連中継ポンプ場

松留中継ポンプ場及び川合中継ポンプ場については、直列2段ポンプのうち後段ポンプのみ可変速運転で、ポンプ井水位による間欠運転を行った。

各マンホールポンプについては、ポンプ井水位による間欠運転を行った。

サ) 伏越設備

猿橋伏越設備は初期用 ϕ 300mmの管1条のみの使用とした。なお、管路内の滞泥防止対策として、1日1回のフラッシングを行った。ドライアップポンプは月1回の保守運転を行った。

②未使用機器の保守

未使用機器は定期点検時にあるいは週1回の保守運転を実施した。予備機のある機器については 1週間毎ないし1箇月毎の交互切替運転とした。

③機器故障状況

本年度の主な機器故障状況を表5-19に示す。

	表 5 -	1 5	主要機	器運転	状況					(単位	: 時間)
5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計

項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
No. 1 生汚泥ポンプ	2.6	222.4	18.8	218.9	2.3	212.3	2. 3	216.6	9. 6	188.0	16.6	206. 2	1, 316. 6
No. 2 生汚泥ポンプ	215. 4	3.8	193.7	3. 7	222. 1	10.6	223. 4	2.5	214. 2	38. 5	185. 1	17. 1	1, 330. 1
No. 1-1 送風機	10.5	0.5	233.7	539.8	539.6	522. 2	45. 4	0.5	461.4	540.4	489. 2	540.3	3, 923. 5
No. 1-2 送風機	514. 4	541.9	288.9	0.6	0.6	0.7	495. 9	523.6	79. 6	0.5	0.5	0.6	2, 447. 8
No. 1-1 返送汚泥ポンプ	9. 2	576.6	50.4	577.3	11.6	539. 1	8.6	559.7	30.7	482.8	47.6	539. 3	3, 432. 9
No. 1-2 返送汚泥ポンプ	559. 9	11.8	518.1	11.7	576. 9	30.6	579. 9	11.7	558. 5	106.4	485.2	49.9	3, 500. 6
No.1 余剰汚泥ポンプ	0.7	36. 3	2.9	35. 9	0.7	31. 1	0.7	39. 9	1. 9	30. 2	3.4	40.3	224. 0
No. 2 余剰汚泥ポンプ	40.3	0.8	33.7	0.7	39.8	1.8	35. 9	0.9	40.4	7. 1	35. 2	3.3	239. 9
No. 1 紫外線消毒装置	370.6	744.0	720.0	275. 1	15.6	0.1	222. 9	685.8	744.0	398. 2	0.1	0.1	4, 176. 5
No. 2 紫外線消毒装置	349.8	0.2	0.1	469.0	743.8	720.0	521. 3	34. 5	0.2	346.0	669.0	744.0	4, 597. 9
No. 1 遠心濃縮機	10.3	9.0	12.3	9.5	10.4	8.7	3. 2	3. 2	10.7	9.9	2. 1	0.0	89. 3
No. 2 機械濃縮機	175. 9	172. 1	159.3	173.6	175. 1	157. 3	173. 9	183.8	183. 2	161.1	171.8	190. 4	2,077.5
No. 1 遠心脱水機	23.4	23. 3	41.6	48.4	10.2	32. 1	24. 7	20. 1	28. 7	19.5	21.3	31.0	324. 3
No. 2 汚泥脱水機	225.8	218.8	194.6	230.7	236. 1	236. 2	235. 4	198. 5	196. 4	198.8	203. 1	212.5	2, 586. 9
No.1 非常用発電機	0.2	0.2	1.1	1.4	2.4	1. 1	0.2	0.2	1. 1	0.2	0.7	1. 1	9. 9

表5-16 し渣及び沈砂搬出状況

項	1	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
し渣搬出量(水処理系)	(kg)	883. 1	0.0	0.0	0.0	822.6	0.0	0.0	0.0	0.0	1, 176. 4	0.0	0.0	2,882.1
し渣搬出量(汚泥処理系)	(kg)	544. 5	0.0	0.0	0.0	367.4	0.0	0.0	0.0	0.0	407.8	0.0	0.0	1, 319. 7
沈砂搬出量	(kg)	686.4	0.0	0.0	0.0	794. 2	0.0	0.0	0.0	0.0	419.8	0.0	0.0	1,900.4

表5-17 薬品・給水・燃料使用状況

	項目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
薬品	高分子凝集剤(機械濃縮系)	(kg)	40.0	38. 0	38.0	40.0	36. 0	34.0	38. 0	44.0	42.0	38.0	34.0	38. 0	460.0
	高分子凝集剤(脱水機系)	(kg)	396. 0	378.0	378.0	504.0	396. 0	378.0	360.0	342.0	414.0	360.0	360.0	396. 0	4,662.0
	消臭剤(機械濃縮系)	(L)	375	415	375	400	395	390	425	375	365	380	355	380	4,630
	消臭剤(脱水機系)	(L)	230	240	205	420	395	420	395	290	85	75	70	80	2, 905
	PAC	(L)	8, 236	8, 417	8, 227	8, 174	9, 391	7, 992	9,061	8, 325	7, 709	8, 045	7, 638	8, 115	99, 330
	苛性ソーダ	(L)	3, 356	3, 435	3, 353	3, 344	3, 817	3, 252	3,686	3, 388	3, 154	3, 283	3, 110	3, 326	40, 504
給水	上水	(m^3)	64	71	62	60	57	54	60	77	54	51	58	54	722
	砂ろ過水	(m³)	5, 773	5, 926	6,013	5,802	5, 293	5, 552	5,014	4, 759	5, 236	4,889	4, 448	5, 228	63, 933
燃料	重油	(L)	33	32	182	247	501	201	32	33	203	33	119	206	1,822

表 5 - 1 8 中継ポンプ場運転状況 (単位:時間)

ポンプ場名	項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計
	No. 1-1 汚水ス	ドンプ	19.8	367.3	52. 3	435.6	80.0	409.9	5. 4	385.0	32. 4	350. 5	46.8	397. 5	2, 582. 5
	No. 1-2 汚水オ	ポンプ	19.6	362. 9	51.5	430.6	79. 2	405.0	5. 3	381. 9	32.0	346.6	46.1	392.8	2, 553. 5
	No. 2-1 汚水ス	ポンプ	415.7	86. 1	403.8	20.9	371.3	40.4	465. 9	66.4	408.6	76.6	341.0	46.0	2, 742. 7
松留	No. 2-2 汚水ス	ドンプ	410.9	84. 9	400.1	20.7	367. 4	40.0	461.0	65. 6	404. 7	75. 2	336.4	45. 4	2, 712. 3
中継ポンプ場	No. 3-1 汚水オ	ポンプ	0.5	0.4	0.4	3.0	2.3	0.4	0.6	1. 1	0.4	0.4	0.5	1.1	11. 1
	No. 3-2 汚水オ	ポンプ	0.5	0.4	0.4	2.8	2.3	0.4	0.6	1. 1	0.4	0.4	0.5	1.1	10.9
	No.1非常用発電	1機	0.2	0.3	0.2	1. 1	0.2	0.2	0.2	0.2	0.2	1.1	0.2	0.2	4. 3
	No.2非常用発電	1機	0.2	0.3	0.2	1. 1	0.2	0.2	0.2	0.2	0.2	1.1	0.2	0.2	4. 3
	No. 1-1 汚水ス	ドンプ	22. 5	398. 9	56. 2	473. 7	86.3	443.6	103. 5	0.0	0.0	0.0	0.2	401.6	1, 986. 5
	No. 1-2 汚水オ	ポンプ	22. 4	398.3	56. 1	472. 2	86.0	442.3	103. 1	0.0	0.0	0.0	0.2	400.0	1, 980. 6
	No. 2-1 汚水ス	ポンプ	469.3	105.0	455.5	25.0	418.8	47.5	416. 1	503.1	502. 9	501.0	455.5	54.7	3, 954. 4
川合	No. 2-2 汚水ス	ポンプ	467. 9	104. 9	454. 5	24. 9	417.5	47.3	415. 4	501.9	501.7	500.0	454.4	54. 4	3, 944. 8
中継ポンプ場	No. 3-1 汚水オ	ポンプ	0.5	0.4	0.4	3.6	3.4	0.4	0.5	0.4	0.4	0.9	3. 1	1.0	15. 0
	No. 3-2 汚水オ	ポンプ	0.5	0.4	0.4	3.6	3.4	0.4	0.5	0.4	0.4	0.9	3. 1	1.0	15. 0
	No.1非常用発電	1機	0.2	0.2	0.2	1. 1	0.2	0.2	0.2	0.2	0.2	1.2	0.6	0.2	4. 7
	No.2非常用発電	1機	0.2	0.2	0.2	1.1	0.2	0.2	0. 2	0.2	0. 2	1.2	0.6	0.2	4. 7

表 5-19 機器故障状況(機械関連)

機器名称	内容及び原因	処置及び対応
汚泥処理棟	通常停止圧力で停止しない状況が確認された。	空気圧縮機本体の交換を
RIB 盤用空気圧縮機	原因は圧力開閉器の故障によるものであった。	実施した。
沈砂池スクリーン棟	圧力計の指示値不良が確認された。	圧力計の交換を実施し
No. 2 給水ポンプ	原因は圧力計の故障によるものであった。	た。
管理本館	室外ユニット・熱源ユニット・インバータと室外制御	基板等故障部品の交換を
ACP-2中央監視室系統	ユニット間伝送異常の警報が発生した。	実施した。
空調機	原因は室外機の基板等の故障によるものであった。	
汚泥処理棟	減圧弁及びミストセパレータからの空気漏れが確認さ	減圧弁及びミストセパレ
No.2薬品溶解タンク	れた。	ータの交換を実施した。
定量フィーダ	原因は減圧弁及びミストセパレータの経年劣化による	
	ものであった。	
砂ろ過・消毒棟	運転時に異音が確認された。	乾燥空気ポンプ本体の交
No. 1 乾燥空気ポンプ	原因は機器内部軸受の破損によるものであった。	換を実施した。
管理本館	室内ユニットドレン水位系異常の警報が確認された。	ドレンポンプ及びフロー
ACP-3水質試験室系統	原因はドレンポンプ及びフロートスイッチの故障によ	トスイッチの交換を実施
空調機	るものであった。	した。
汚泥処理棟	洗浄水バルブの破損が確認された。	バルブの交換を実施し
生汚泥スクリーンかす	原因は経年劣化によるものであった。	た。
脱水機		
砂ろ過・消毒棟	温度設定器の表示の消灯が確認された。	温度設定器の交換を実施
No.1 紫外線消毒装置	原因は温度設定器の故障によるものであった。	した。
沈砂池スクリーン棟	内部部品の破損や摩耗が確認された。	不良部品の交換を実施し
No. 1 給水ポンプ	原因は経年劣化によるものであった。	た。
水処理施設	絶縁抵抗値の低下が確認された。	ケーブル等の交換を実施
№.1-1-5 曝気装置	原因はケーブル等の劣化によるものであった。	した。
水処理施設	バルブの破損が確認された。	バルブの交換を実施し
池上散水栓バルブ	原因は経年劣化によるものであった。	た。
汚泥処理棟	洗浄水配管フレキシブルホースからの漏水が確認され	フレキシブルホースの交
No. 2 汚泥脱水機	た。	換を実施した。
	原因は経年劣化によるものであった。	

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

(2) 電気設備運転管理状況

①電力使用状況

施設の受電電圧は、桂川清流センター、松留中継ポンプ場及び川合中継ポンプ場とも高圧 6,600 V、新田及び新田第2マンホールポンプは低圧 200 V (動力) 及び 100 V (照明) である。

桂川清流センター、松留中継ポンプ場及び川合中継ポンプ場の使用電力量と流入下水量の表とグラフをそれぞれ表 5-20~表 5-22、図 5-9~図 5-11に示す。

桂川清流センターの使用電力量は、 $132\sim150$ 千 kWh/月の間で推移し、年間として 1,691 千 kWh/年となり昨年度と比較して約 1.0%の増加となっている。

これは、省電力型汚泥脱水機の主機運用や夏期・冬期の電力需給対策により電力使用の抑制に努めているものの、流入下水量や汚泥処理量の増加に伴い、水処理及び汚泥処理関連機器の運転時間が増加したことが主な要因である。

桂川清流センターの原単位電力量と最大需要電力の表とグラフをそれぞれ表 5-23、図 5-12、図 5-13に示す。

原単位電力量は 0.588~0.658kWh/m3の間で推移した。

最大需要電力は250~259kWの間で推移した。

桂川清流センターの契約電力は、実量制による契約電力決定方式により、257~259kWで推移した。 また、電気料金のコスト縮減対策として、蓄熱空調機及び蓄熱温水器に係る産業用蓄熱調整契約を 通年、蓄熱空調機に係るピーク時間調整契約を6月~9月の間締結した。

ポンプ場の契約電力は、松留中継ポンプ場及び川合中継ポンプ場は実量制による契約電力決定方式により、それぞれ230~274kW、222~233kWで推移した。

マンホールポンプの契約電力は、設備容量による契約電力決定方式により、新田及び新田第2マンホールポンプは、それぞれ33kW及び6kWである。

②非常用発電設備運転状況

桂川清流センターでは、保守点検として、1箇月に1回約12分間の無負荷運転と3箇月に1回約1時間の実負荷運転を実施し、総発電電力量は600kWhであった。また№1非常用発電機分解点検に伴う試験運転として2月に30分間の無負荷運転を実施した。

松留中継ポンプ場及び川合中継ポンプ場では、保守点検として、1箇月に1回約12分間の無負荷運転と6箇月に1回約1時間の実負荷運転を実施し、総発電電力量はそれぞれ、210kWh 及び250kWh であった。

また、停電による運転として、桂川清流センターでは7月と8月にそれぞれ1時間9分と2時間13分の実負荷運転を実施し、発電電力量は180kWhと360kWhであった。松留中継ポンプ場では5月に8分の実負荷運転を実施し、発電電力量は0kWhであった。

③機器故障状況

本年度の主な機器故障状況を表5-24に示す。

表5-20 使用電力量と流入下水量(清流センター)

(単位:上段 kWh 下段 ㎡)

														, 124 1117
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	139, 296	142, 560	137, 400	150, 336	147, 816	137, 304	135, 648	136, 512	144, 360	144, 312	131, 664	143, 544	1, 690, 752	140, 896
流入下水量	221, 783	228, 278	229, 337	228, 436	226, 071	217, 615	230, 766	221, 924	229, 326	229, 333	210, 955	229, 141	2, 702, 965	225, 247

表5-21 使用電力量と流入下水量(松留中継ポンプ場)

(単位:上段 kWh,下段 m³)

項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	53, 629	55, 285	57, 641	60, 564	62, 587	62, 106	63, 493	59, 780	54, 420	52, 879	48, 167	55, 948	686, 499	57, 208
流入下水量	66, 619	68, 800	70, 567	69, 773	71, 300	66, 880	69, 540	66, 794	66, 369	65, 889	60, 427	68, 143	811, 101	67, 592

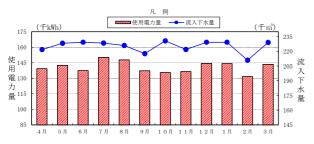


図5-9 使用電力量と流入下水量 (清流センター)

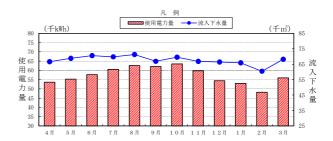


図5-10 使用電力量と流入下水量(松留中継ポンプ場)

表5-22 使用電力量と流入下水量(川合中継ポンプ場)

(単位:上段 kWh,下段 m³)

項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	合計	平均
使用電力量	55, 435	55, 506	56, 997	54, 323	58, 899	53, 522	56, 993	54, 584	54, 920	56, 822	51, 262	44, 130	653, 393	54, 449
流入下水量	95, 775	98, 934	101,821	99, 902	102, 028	95, 975	99, 679	96, 095	95, 808	94, 915	85, 968	97, 255	1, 164, 155	97, 013

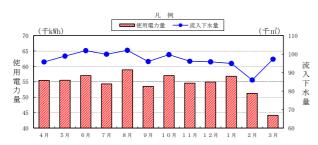


図5-11 使用電力量と流入下水量 (川合中継ポンプ場)

表5-23 原単位電力量と最大需要電力(清流センター)

(単位:上段 kWh/m³,下段 kW)

												() 122 224/24	
項目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	平均
原単位電力量	0.628	0.625	0. 599	0.658	0.654	0.631	0.588	0.615	0.629	0.629	0.624	0.626	0. 626
最大需要電力	257	259	257	254	250	250	254	259	254	254	254	254	255

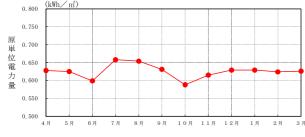


図5-12 原単位電力量 (清流センター)

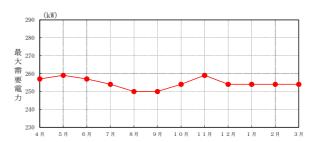


図5-13 最大需要電力(清流センター)

表 5 - 2 4 機器故障状況 (電気関連)

Ţ-		
機器名称	内容及び原因	処置及び対応
水処理施設 終沈 p H計	変換器のタッチパネル操作が不可能となった。 原因はLCDモジュールの不良によるものであった。	LCDモジュールの交換 を実施した。
新田マンホールポンプ 水位検知用 レベルスイッチ	水位異常高の警報が復帰しない状況となった。 原因はレベルスイッチの不良によるものであった。	レベルスイッチの交換を 実施した。
汚泥処理棟 汚泥濃縮設備 コントロールセンタ	No. 1 濃縮汚泥受槽攪拌機の欠相警報が発生した。 原因はコントロールセンタユニット内の電磁接触器の 不良によるものであった。	電磁接触器の交換を実施した。
川合中継ポンプ場 No. 3-2 汚水ポンプ設備 コントロールセンタ	No. 3-2汚水ポンプの欠相警報が発生した。 原因はスターデルタ回路の電磁接触器の不良によるも のであった。	電磁接触器の交換を実施した。

注) 令和6年度に発生した機器故障のうち、修繕費等を執行し、処置を行ったものについて記載している。

3 水質及び汚泥管理状況

(1) 水質管理状況

①水質試験結果

水質日常試験及び精密試験結果を表 5-25~表 5-28、図 5-14~図 5-15に示す。流入水は、年間平均BODが 170 mg/L、SSについては 200 mg/L であった。

放流水は、年間を通じて安定して良好な水質で推移した。燐含有量は年間平均で 0.56mg/L であった。

②幹線調査結果

幹線調査結果を表5-29に示す。

地点①、②、③、⑤でふっ素及びその化合物が、地点①及び地点⑤で亜鉛含有量が、地点④で溶解性鉄含有量が検出されたが、下水道排除基準を超過することはなかった。

③反応タンク試験結果及び生物試験結果

反応タンク運転状況、反応タンク試験結果及び生物試験結果を表 5-30~表 5-33に、反応タンクの管理状況を図 5-16~図 5-17に示す。

反応タンクは、脱窒による汚泥浮上対策を目的として第1槽目を嫌気とした運転を行った。また、窒素除去を目的として第3槽目を無酸素とした嫌気硝化内生脱窒法による運転を行った。

SVIは130~220mL/gの間で推移し、沈降性悪化による障害は認められなかった。

BOD-SS負荷は年間を通じて、0.05~0.11kg/kg・日の間で推移した。

活性汚泥生物は、微生物の種類についても多く、活性汚泥性生物の割合についても高く良好な状態であった。

④通日試験結果

通日試験結果を表5-34~表5-37、図5-18~図5-33に示す。

流入負荷については、流入水量が少ないため、ポンプ場からの流入及び汚泥処理施設からの返流 水の影響を受け、一時的に負荷が高くなる傾向を示した。

放流水は、水質変動が小さく安定した良好なものであった。

(2) 汚泥管理状況

汚泥処理運転状況を表5-38に、汚泥試験測定結果を表5-39~表5-41に示す。

汚泥処理については、最初沈殿池で発生する生汚泥は重力濃縮槽へ投入、最終沈殿池で発生する 余剰汚泥は機械濃縮機に投入して濃縮を行い、混合濃縮汚泥は8月から10月にかけて低い値で推 移したが、年間平均で3.6%程度の濃度となった。

脱水はNo.2 二重円筒加圧脱水機を主機として使用し、週 $6\sim7$ 日の運転により処理を行った。 脱水ケーキの発生量は、年間 1,649.58 t、含水率は年間平均値で 68.3%となった。なお、脱水ケーキは、セメント原料として全量有効利用した。

(3) その他管理状況

①放流河川調査結果

放流河川調査結果を表5-42~表5-43に示す。

清流センター放流口の上流にあたる塩瀬橋地点、下流にあたる金畑橋地点ともに、ほぼ同等の水質であった。

②臭気測定結果

臭気測定結果を表5-44に示す。

敷地境界及び放流水においては、規制値以下の結果であった。

表 5 - 2 5 日常試験分析結果(流入水)

項	1	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水 温	最大	20.0	22.0	23.0	25. 0	26. 5	26. 0	25.0	23. 0	20.0	17.0	17.0	18.0	26. 5
	最小	17. 5	19. 5	21.5	22. 0	24. 5	25.0	23.0	20.5	17. 5	16.5	16.0	16.0	16. 0
(℃)	平均	18.8	20.9	22. 3	23. 9	25. 5	25. 6	24.0	21.7	19. 0	16. 9	16. 4	16.7	21. 0
水素イオン濃度	最大	6.86	7.00	6. 99	6. 93	7. 02	7.02	6. 97	6. 98	6. 92	7.01	7.00	7.01	7.02
	最小	6.70	6. 78	6. 75	6.72	6.82	6.67	6. 78	6.80	6.80	6.80	6.84	6.80	6. 67
	平均	6. 79	6.88	6.83	6.80	6. 91	6.87	6.87	6.88	6.86	6.91	6. 93	6. 90	6. 87
透視度	最大	7.0	7.0	7.0	7. 0	7.0	8.0	8.0	7.0	7. 0	7.0	6.0	7.0	8. 0
	最小	5.0	5.0	5.0	3. 0	5.0	3.0	6.0	5.0	5.0	5.0	4.0	5.0	3. 0
(cm)	平均	5. 6	5. 9	6. 1	5. 5	6.3	5. 7	6.5	6.0	6. 2	5.6	5.4	5. 7	5. 9
浮遊物質量	最大	240	250	280	420	230	410	220	220	220	220	260	220	420
	最小	180	190	170	150	160	140	150	150	140	160	160	170	140
(mg/L)	平均	210	220	210	240	180	220	180	180	180	190	200	190	200
生物化学的酸素要求量	最大	200	200	170	240	180	240	140	170	170	170	220	220	240
	最小	150	150	130	190	140	160	120	130	150	140	170	150	120
(mg/L)	平均	170	170	150	220	150	190	130	160	160	160	190	170	170
化学的酸素要求量	最大	120	120	180	180	100	170	110	100	110	110	130	110	180
	最小	86	89	84	86	75	70	75	77	85	85	91	87	70
(mg/L)	平均	100	100	97	110	91	110	90	92	95	96	100	97	98
大腸菌群数	最大	50	56	80	110	100	85	47	30	55	40	38	56	110
	最小	20	49	45	22	21	20	21	20	22	14	20	29	14
(千個/cm³)	平均	36	51	59	65	59	56	33	25	33	23	26	37	42

※年最大最小平均の欄の平均については、月間平均値の平均値である。

表 5 - 2 6 日常試験分析結果(放流水)

項		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水 温	最大	20.0	22. 0	23.0	25. 0	26.0	25. 5	25.0	22. 5	20.0	17.5	17.0	18.5	26. 0
	最小	18.0	20.0	21.5	23. 0	25.0	24. 5	23.0	20.5	18.0	16.5	16. 5	16.5	16. 5
(℃)	平均	19.0	20. 9	22. 2	24. 0	25. 5	25. 2	23.8	21.5	19.0	17. 1	16.8	17. 3	21.0
水素イオン濃度	最大	6. 58	6.54	6.70	6.60	6. 56	6. 78	6.80	6.61	6.65	6. 55	6. 52	6. 57	6. 80
	最小	6. 33	6. 39	6.35	6.40	6.41	6.43	6.39	6. 42	6.36	6.37	6.40	6.36	6. 33
	平均	6.44	6.46	6.47	6.51	6. 49	6.60	6. 67	6. 53	6. 52	6. 45	6. 47	6.47	6. 51
透視度	最大	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
	最小	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
(cm)	平均	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
浮遊物質量	最大	3. 2	2.3	2. 9	2.6	3.9	1.9	2.2	2. 1	2. 2	1.9	2.3	2.5	3.9
	最小	1.3	1.7	1.6	1.4	<1.0	1.3	1.4	1.1	1.4	1.0	1.2	1.5	<1.0
(mg/L)	平均	2. 2	1.9	2. 2	2.0	1.6	1.6	1.9	1.7	1.7	1.6	1.7	1.9	1.8
生物化学的酸素要求量	最大	1.8	1. 9	2. 1	2. 6	1.6	1.7	1.7	1.6	1.7	1.5	2. 1	1.8	2.6
	最小	1.6	1.3	1.2	1. 3	1.0	1.3	1.2	1.3	1.3	1.2	1.3	1.5	1.0
(mg/L)	平均	1.7	1.7	1.6	1. 7	1.3	1.5	1.5	1.5	1.5	1.4	1.6	1.7	1.6
化学的酸素要求量	最大	8.4	7.6	7.7	8.0	7.7	7.7	7.7	7.6	7. 6	7.3	7. 7	8.1	8.4
	最小	6. 9	6. 9	6. 4	6. 5	6.5	4.7	6.7	6.4	6.5	6.4	6.7	6.8	4. 7
(mg/L)	平均	7.6	7. 2	7. 1	7. 2	7.0	6.8	7. 2	7. 1	7. 2	6.9	7. 2	7.3	7.2
大腸菌群数	最大	16	17	17	11	8	13	9	7	6	3	3	4	17
	最小	4	8	4	4	3	4	2	1	1	1	1	2	1
(個/cm ³)	平均	8	13	12	8	6	7	5	4	3	2	2	3	6

※年最大最小平均の欄の平均については、月間平均値の平均値である。

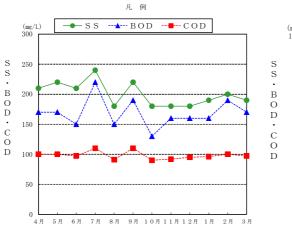


図5-14 流入水の水質変化

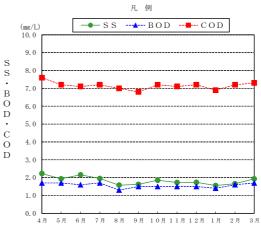


図5-15 放流水の水質変化

表 5 - 2 7 (1) 精密試験分析結果(流入水-1)

透視度	1 O月 3 1 5.0 24. .0 7. 97 6.8 .00 50 .50 25 .30 32 .60 17 .50 14 .84 10 .4 20. .02 <0.0 .30 0.3 .7 13. .5 34. .86 2.0 .23 4.7
本級	24. 20. 24. 20. 25. 25. 26. 26. 27. 28. 28. 28. 29. 29. 20. 20. 20. 20. 20. 20
透視度 cm	7. 0 7. 97 6. 8 600 50 50 25 30 32 60 17 50 14 30 14 84 10 02 <0.02 <0.03 0.3 0.3 0.3 1.7 13. 5 34. 86 2. 0
株型子の	97 6. 8 600 50 50 25 30 32 60 17 50 14 30 14 84 10 . 4 20. 02 <0. 0 30 0. 3 . 7 13. . 5 34. 86 2. 0
無発性闘物	00 50 50 25 30 32 60 17 50 14 30 14 84 10 .4 20. 02 <0.0 30 0.3 .7 13. .5 34.
無熱疾病療物 mg/L 350 350 310 250 240 240 240 230 240 220 240 180 240 250 310 300 290 310 330 320 270 290 310 340 240 250 310 350 320 270 290 310 340 240 240 240 240 240 240 240 240 240 2	50 25 30 32 60 17 50 14 30 14 84 10 .4 20. 02 <0.0 30 0.3 .7 13. .5 34. 86 2.0
無熱疾病療物 mg/L 350 350 310 250 240 240 240 230 240 220 240 180 240 250 310 300 290 310 330 320 270 290 310 340 240 250 310 350 320 270 290 310 340 240 240 240 240 240 240 240 240 240 2	50 25 30 32 60 17 50 14 30 14 84 10 .4 20. 02 <0.0 30 0.3 .7 13. .5 34. 86 2.0
麻祭性的質	30 32 60 17 50 14 30 14 84 10 . 4 20. 02 <0.0 30 0.3 . 7 13. . 5 34.
遊遊物質量 mg/L 180 210 210 210 180 210 180 310 230 190 150 240	60 17 50 14 30 14 84 10 0.4 20. 02 <0.0 30 0.3 0.7 13. 0.5 34.
一次の少良度 mg/L 145 147 141 143 142 137 142 140 147 156 139 140 生物化学的酸素要求量 mg/L 150 200 160 150 130 140 190 210 180 150 150 160 180 180 化学的酸素要求量 mg/L 100 110 94 97 86 91 110 120 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 80 75 89 81 110 170 81 75 89 81 81 110 170 81 75 89 81 81 110 170 81 75 89 81 81 110 170 81 75 89 81 81 110 170 81 75 89 81 81 110 170 81 75 89 81 81 110 81 81 81 81 81 81 81 81 81 81 81 81 81	50 14 30 14 84 10 0.4 20. 02 <0.0 30 0.3 0.7 13. 0.5 34.
生物化学的酸素要求量 mg/L 150 200 160 150 130 140 190 210 180 150 160 180 175 160 180 化学的酸素要求量 mg/L 100 110 94 97 86 91 110 120 75 89 81 110 75 89 81 110 75 81 110 75 89 8	30 14 84 10 . 4 20. 02 <0. 0 30 0. 3 . 7 13. . 5 34. 86 2. 0
化学的酸素要求量	84 10 0.4 20. 002 <0.0 30 0.3 0.7 13. 0.5 34. 86 2.0
アンモニア性産素含有量 mg/L	0. 4 20. 02 <0. 03 0. 3 0. 3 1. 7 13. 0. 5 34. 86 2. 0
亜硝酸性窒素含有量 mg/L 0.37 0.34 0.31 0.24 0.02 0.02 0.04 0.02 0.02 0.00 0.00	02 <0.0 30 0.3 0.7 13. 0.5 34. 86 2.0
亜硝酸性窒素含有量 mg/L 0.37 0.34 0.31 0.24 0.02 0.02 0.04 0.02 0.02 0.00 0.00	02 <0.0 30 0.3 0.7 13. 0.5 34. 86 2.0
弱酸性窒素含有量	30 0.3 0.7 13. 0.5 34. 86 2.0
特権性金素含有量	. 7 13. . 5 34. 86 2. 0
蜜素含有量	34. 86 2.0
横酸イオン態勝含有量 mg/L 2.36 2.37 1.78 1.82 1.56 1.74 2.12 2.08 2.70 2.15 1.92 2.04 持含有量 mg/L 5.25 5.30 4.57 4.61 3.97 4.00 5.01 6.12 5.39 4.39 3.91 4.39 大腸菌酵数 千個/四3 34 50 56 50 45 80 48 110 100 21 20 47 よう素消費量 mg/L 9 10 11 11 13 10 11 15 18 18 11 13 13 14 15 15 18 18 11 13 13 14 14 15 18 18 11 13 13 14 14 15 18 18 11 13 14 14 15 18 18 11 13 14 14 15 18 18 11 13 14 14 15 18 18 11 13 14 14 15 18 18 11 13 14 14 15 18 18 11 13 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 18 18 14 14 15 14 14 14 14 14	86 2.0
構含有量	
大勝簡群数 千倒/㎡ 34 50 56 50 45 80 48 110 100 21 20 47 よう素消費量 mg/L 9 10 10 11 13 10 11 15 18 18 11 13 1 1 13 1 10 11 15 18 18 11 13 1 10 11 15 18 18 11 13 1 10 11 15 18 18 11 13 1 10 11 15 18 18 11 13 1 13 10 11 15 18 18 11 13 1 13 10 11 15 18 18 11 13 1 13 10 11 15 18 18 11 13 1 13 10 11 15 18 18 11 13 1 13 10 11 15 18 18 11 13 1 13 10 11 15 18 18 18 11 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	23 4. 7
よう素消費量	
かかや神田物質含有量 mg/L	47 4
かかい神が抽出物質含有量 mg/L 5 6 5 5 5 5 5 6 5 5 6 5 5 5 6 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 5 6 5 5 5 5 5 6 5	11 1
シアン化合物 mg/L	7
フェノール類含有量 mg/L く0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	01 <0.0
鉄含有量 mg/L 0.12 <0.10 0.94 0.17 0.12 0.15 0.21 0.34 0.25 0.23 0.26 0.22 溶解性鉄含有量 mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.1	50 <0.5
溶解性鉄含有量 mg/L ⟨0.10 ⟨0.	14 0.1
マンガン含有量	
密解性マンガン含有量 mg/L	10 <0.1
無給含有量 mg/L <0.10 <0.10 <0.10 <0.11 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.0	10 <0.1
嗣含有量 mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00	10 <0.1
齢及びその化合物 mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	10 0.1
齢及びその化合物 mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	10 <0.1
カドミウム及びその化合物 mg/L	01 <0.0
クロム含有量 mg/L <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <	01 <0.00
大価クロム化合物	05 <0.0
 砒素及びその化合物 mg/L <0.005 <0.0005 <0.00	
水銀及びアルキル水銀 その他の水銀化合物 mg/L	
その他の水銀化合物 mg/L	

表 5 - 2 7 (2) 精密試験分析結果(流入水-2)

No. 1. 77 -	22.61	20	- <u>/</u> /	(\(\alpha \)			<u> </u>		(7)ルノ		<u> </u>	- ·	H .	
測定項目	単位		1月		2月		月		月		月	最大	最小	平均
実施日	_	7	21	5	19	9	23	5		6	19	_	1	_
水温	$^{\circ}\! \mathbb{C}$	22. 5	21.5	20.0	18. 5	17.0	17.0	16. 5	16. 5	16. 5	16. 5	26. 0	16. 5	20.9
透視度	c m	7.0	6.0	6.0	5.0	6.0	5.0	4.0	6.0	6.0	5.0	7.0	4.0	6.0
水素イオン濃度	_	6. 91	6. 92	6. 91	6. 90	7.01	6. 96	6. 97	6. 92	6.87	7.01	7.02	6.80	6. 91
蒸発残留物	mg/L	490	480	510	500	480	520	570	520	500	550	630	440	510
強熱残留物	mg/L	250	250	270	250	250	260	250	250	240	240	270	180	240
溶解性物質	mg/L	300	320	320	320	330	320	280	320	330	320	350	250	310
浮遊物質量	mg/L	170	190	190	210	160	210	260	180	170	220	310	150	200
アルカリ度	mg/L	144	150	144	149	145	147	148	143	139	147	156	137	145
生物化学的酸素要求量	mg/L	130	160	170	150	160	160	220	170	150	220	220	130	170
化学的酸素要求量	mg/L	91	94	94	110	86	95	130	100	88	110	130	75	98
アンモニア性窒素含有量	mg/L	18.7	21.6	18.6	18. 9	19.3	22.0	16. 6	16.8	18. 6	17. 7	22. 0	12. 5	19. 1
亜硝酸性窒素含有量	mg/L	<0.02	<0.02	0. 13	0. 11	0.04	0. 15	0.04	0. 10	0. 09	<0.02	0. 15	<0.02	0. 03
硝酸性窒素含有量	mg/L	0. 37	0. 39	0. 41	0. 33	0.71	0. 42	0. 45		0. 41	0. 36	0. 71	0. 22	0. 37
有機性窒素含有量	mg/L	10.0	12. 2	13. 9	5. 78	2. 78	9. 76	16. 9		1. 48	12. 0	16. 9	1. 48	11. 4
室素含有量	mg/L	29. 1	34. 2	33. 1	25. 2	22. 9	32. 3	33. 9		20. 6	30. 0	36. 5	20.6	30. 9
燐酸イオン態燐含有量	mg/L	2. 01	1. 98	1. 93	2. 03	1.88	1. 88	1.88		1. 60	1.84	2. 70	1. 56	1. 98
焼含有量	mg/L	3. 76	4. 08	4. 29	4. 11	4. 16	4. 10	5. 04		3. 61	4. 74	6. 12	3. 61	4. 49
大腸菌群数	- IIIg/L 千個/cm ³	3.70	29	27	26	19	4. 10	38		30	56	110	19	4. 43
よう素消費量	一个 mg/L	11	11	11	11	11	11	10		12	8	110	8	12
ノルマルトキサン抽出物質含有量	mg/L	< ₅	<5	<5	5	<5	<5	7	5	5	15	15	<5	<5
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量		<0.01	<0.01		<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	
鉄含有量	mg/L	0. 15		<0. 50 0. 23	0. 23			0. 28		0. 24			<0. 10	<0.50 0.25
	mg/L		0. 15			0. 42	0. 16				0.48	0. 94		
溶解性鉄含有量	mg/L	<0.10	<0.10	<0.10	0. 12	<0.10	0. 11	<0.10		<0.10	0. 13	0. 29	<0.10	<0.10
マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	<0.10	<0.10	<0.10	0. 12	<0.10	<0.10	0. 23	0. 15	<0.10	<0.10	0. 23	<0.10	<0.10
銅含有量	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10
鉛及びその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
カドミウム及びその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
クロム含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0. 07	<0.05	<0.05
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素及びその化合物 水銀及びアルキル水銀	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
不転及のアルギル小野 その他の水銀化合物	${\rm mg/L}$	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	_	-	-	_	_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
テトラクロロエチレン	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	_	_	_	_	_	<0.0005		_	_	<0.0005	<0.0005	<0.0005
有機燐化合物	mg/L	_	_	_	_	_	_	<0.1	_	_	_	<0.1	<0.1	<0.1
ポリ塩化ビフェニル	mg/L	_	_	_	_	_	_	<0.0005	_	_	_	<0.0005	<0.0005	<0.0005
ジクロロメタン	mg/L	<0.02	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
四塩化炭素	mg/L	_	_	_	_	_	_	<0.002	_	_	_	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	<0.004	_	_	_	_	_	<0.004	_	_	_	<0.004	<0.004	<0.004
1, 1-ジクロロエチレン	mg/L	_	_	_	_	_	_	<0.02	_	_	_	<0.02	<0.02	<0.02
シス1, 2-ジクロロエチレン	mg/L	_	_	_	_	_	_	<0.04		_	_	<0.04	<0.04	<0.04
1,1,1-トリクロロエタン	mg/L	_	_	_	_	_	_	<0.001	_	_	_	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	_	_	_	_	_	_	<0.006	_	_	_	<0.006	<0.006	<0.006
1,3-ジクロロプロペン	mg/L	_	_	_	_	_	_	<0.002		_	_	<0.002	<0.002	<0.002
チウラム	mg/L	_	_	_	_	_	_	<0.006		_	_	<0.006	<0.006	
シマジン	mg/L	_	_	_	_	_	_	<0.003	_	_	_	<0.003	<0.003	<0.003
チオベンカルブ	mg/L	_	_	_	_		_	<0.02		_	_	<0.02	<0.02	<0.02
ベンゼン	mg/L	<0.01	_		_	_	_	<0.01		_	_	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	<0.01	_	_	_		_	<0.01		_	_	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	<0.10		<0.10	0. 14	<0.10				0. 13		0. 15	<0.10	
アンモニア性窒素、亜硝酸性窒素														
及び硝酸性窒素含有量	mg/L	19. 1	22. 0	19. 1	19. 3	20.0	22. 6	17. 1		19. 1	18. 1	22. 6	12.8	19. 5
1,4-ジオキサン	mg/L	_	_	_	_	_	_	<0.05	_	_	_	<0.05	<0.05	<0.05

表 5 - 2 8 (1) 精密試験分析結果(放流水-1)

l			$\frac{1}{5} - \frac{1}{2}$		Ι)			分析結		<u> </u>				_		
測定項目	単位	水質基準		月		月		月		月	8			月	1 (
実施日	_		4	18	2	16	6	20	4	18	1	15	5	19	3	17
水温	$^{\circ}$ C		18. 5	19. 5	20.0	21.0	21.5	22. 5	23. 0	24.0	25. 0	25.0	25.0	25. 5	24. 5	23. 5
透視度	сm		>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
水素イオン濃度		5.8~8.6	6.47	6. 41	6.44	6.50	6.40	6. 47	6. 53	6.60	6. 51	6.50	6. 47	6. 78	6. 74	6. 78
蒸発残留物	mg/L		350	300	270	300	340	290	340	340	290	260	300	300	320	310
強熱残留物	mg/L		230	230	230	230	230	200	220	170	230	180	220	230	230	260
溶解性物質	mg/L		350	290	250	290	340	280	330	320	290	250	280	300	310	300
浮遊物質量	mg/L	40 (30)	3. 0	1.8	1. 7	2. 2	1.6	1.7	2. 1	2.0	1.5	1.7	1.3	1.7	1.6	2. 1
アルカリ度	mg/L		54	48	47	43	40	46	49	53	48	49	45	70	64	73
生物化学的酸素要求量	mg/L	15 (15)	1. 7	1.8	1. 9	1.9	1.2	1. 3	1.3	1.6	1.0	1.4	1.3	1.3	1. 3	1.7
化学的酸素要求量	mg/L		7. 9	7. 2	7. 4	7.4	6.5	7.0	7. 0	7.0	6. 9	6. 9	6.5	7. 1	7. 2	7.3
アンモニア性窒素含有量	mg/L		2.46	1.50	2.61	1.05	0. 51	0. 73	0. 93	1.64	1.06	0.54	0.64	2. 50	2.44	4. 39
亜硝酸性窒素含有量	mg/L		0.09	0.07	0.08	0.06	0.04	0.06	0.07	0.08	0.09	0.07	0.05	0.12	0.14	0.15
硝酸性窒素含有量	mg/L		7. 98	7. 51	8.83	8. 28	7. 93	4. 74	7. 29	6. 69	8. 10	7. 77	8. 75	3. 47	5. 25	3. 94
有機性窒素含有量	mg/L		1. 33	0.65	0.30	0.53	0.64	0.61	0.81	0.65	0.71	0.74	0. 57	0.82	0.70	0.73
窒素含有量	mg/L	120 (60)	11. 9	9. 72	11.8	9. 92	9. 13	6. 14	9. 11	9.06	9. 96	9. 12	10.0	6. 92	8.54	9. 20
燐酸イオン態燐含有量	mg/L		0.31	0.44	0.46	0.30	0. 25	0.34	0. 22	0. 93	1. 18	0.35	0. 51	0.05	0.73	0.41
燐含有量	mg/L	16 (8)	0.42	0. 53	0.56	0.40	0. 33	0.42	0. 29	1.05	1. 27	0.42	0. 56	0.07	0.81	0.49
大腸菌群数	個/cm ³	1,000	4	16	17	11	4	12	11	4	3	8	4	5	3	9
よう素消費量	mg/L		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ノルマルヘキサン抽出物質含有量	mg/L	10		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
シアン化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
鉄含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
マンガン含有量	mg/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
亜鉛含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
銅含有量 鉛及びその化合物	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
お及いての化合物 カドミウム及びその化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
クロム含有量	mg/L mg/L	小快山 0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
六価クロム化合物	mg/L	0. 05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
砒素及びその化合物	mg/L	0.05		<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
水銀及びアルキル水銀																
その他の水銀化合物	mg/L	0.005	<0.0005	<0.0005	<0.0005	(0.0005	<0.0005	(0.0005	<0.0005	(0.0005		<0.0005	<0.0005	(0.0005	<0.0005	<0.0005
トリクロロエチレン	mg/L	0. 1	_	_	_	_	_	_	_	_	<0.002	_	_	_	_	_
テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				<0.0005		<0.0005	<0.0005	<0.0005	
アルキル水銀化合物	mg/L	不検出	_	_		_	_	_	-	_	<0.0005	_	_	_	_	_
有機燐化合物	mg/L	不検出		_		_	_	_		_	<0.1	_	_	_	_	_
ポリ塩化ビフェニル	mg/L	0.003		- /0.00	- /0.02		- /0.02	- 0.00			<0.0005	- /0.02	- /0.02	/0.00		- (0, 00
ジクロロメタン 四塩化炭素	mg/L	0. 2		<0. 02 —	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
四塩化灰系 1,2-ジクロロエタン	mg/L	0.02		<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.002	ZO 004	ZO 004	ZO 004	- - -	<0.004
1, 2-シクロロエタン 1, 1-ジクロロエチレン	mg/L mg/L	0.04	- 0.004	- 0.004	- 0.004	- 0.004	- 0.004	- 0.004	- 0.004	- 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	- 0.004
シス1,2-ジクロロエチレン	mg/L mg/L	0.4	_	_		_	_	_		_	<0.02			_	_	_
1, 1, 1-トリクロロエタン	mg/L	3		_		_	_	_		_	<0.04	_	_	_	_	
1, 1, 2-トリクロロエタン	mg/L	0.06		_	_	_	_	_	_	_	<0.001	_	_	_	_	_
1, 3-ジクロロプロペン	mg/L	0.00		_	_	_	_	_	-	_	<0.002	-	_	_	_	_
チウラム	mg/L	0.06		_	_	_	_	_	_	_	<0.006	_	_	_	_	_
シマジン	mg/L	0.03		_	_	_	-	_	1	_	<0.003	-	-	_	_	_
チオベンカルブ	mg/L	0. 2		_	_	_	_	_	_	_	<0.02	_	_	_	_	_
ベンゼン	mg/L	0. 1		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ほう素及びその化合物	mg/L	10		<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ふっ素及びその化合物	mg/L	1		<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		<0.10	<0.10	<0.10
アンモニア、アンモニウム化合物、亜硝	mg/L	100		8. 18	9. 95		8. 17	5. 09	7. 73	7. 43	8. 61	8. 06	9. 06	4. 59	6. 37	5. 85
酸化合物及び硝酸化合物				0. 10	J. 90	0.70	0.17	5.09	1.13			0.00	<i>9.</i> 00	4. 59	0.37	ə. oə —
1, 4-ジオキサン	mg/L	0. 5	_	_		_	_	_	_	_	<0.05	_	_	_	_	_

表 5 - 2 8 (2) 精密試験分析結果(放流水-2)

接触性 一	平均
水温 × ×a	>100 6. 53 310 233 300 1. 8 52 1. 4 7. 1. 66 0. 09 6. 74 0. 66 9. 11
透視度	>100 6. 53 310 233 300 1. 8 52 1. 4 7. 1. 66 0. 09 6. 74 0. 66 9. 11
未素イ末と濃度 一 5,8~8,6 6,59 6,52 6,53 6,48 6,48 6,50 6,49 6,52 6,48 6,49 6,52 6,48 6,40 6,78 6,40 蒸発機関物 mg/L 250 240 250 240 230 250 250 240 220 260 170 溶解性的質 mg/L 40(30) 1.6 1.5 1.5 2.2 2.0 290 310 360 300 360 300 360 300 360 300 360 300 360 300 360 300 360 300 360 300 360 300 360 300 360 300 300 360 300	6. 53 310 230 300 1. 8 52 1. 4 7
緊発疾傷物 mg/L 250 240 250 240 250 240 250 250 250 250 240 220 260 170	310 230 300 1. 8 52 1. 6 7. 1. 66 0. 00 6. 74 0. 66 9. 11
無熱残留物 四/L 250 240 250 240 240 230 250 250 250 240 220 260 170 26前 240 240 230 250 250 250 240 220 260 170 26前 240 240 230 250 250 250 240 220 260 170 26前 240 240 240 230 250 250 250 240 220 260 170 26前 240 24	230 300 1. 8 5: 7. 1. 6 0. 00 6. 7- 0. 66 9. 11
溶解性物質	300 1. 8 52 1. 8 7. 1 1. 68 0. 09 6. 7 ² 0. 62 9. 13
浮遊物質儀 mg/L 40(30) 1.6 1.5 1.5 1.5 2.2 1.2 1.9 2.3 1.2 1.7 2.2 3.0 1.2	1. 8 52 1. 5 7. 1 1. 68 0. 09 6. 7 ² 0. 62 9. 13
アルカリ度 mg/L 15(15) 1.4 1.3 1.3 1.7 1.4 1.5 2.1 1.3 1.5 1.8 2.1 1.0 化学的除業要求量 mg/L 7.1 7.1 7.1 7.5 7.6 6.5 7.1 7.3 7.1 7.4 7.2 7.9 6.5 1.0 化学的除素要求量 mg/L 1.95 2.38 2.64 1.53 1.10 1.8 1.16 1.25 1.27 1.58 4.39 0.51 単語検性室素含有量 mg/L 0.09 0.15 0.17 0.13 0.07 0.09 0.08 0.07 0.07 0.09 0.17 0.04 結務性室素含有量 mg/L 8.46 7.77 6.11 4.31 7.05 6.19 6.92 6.17 4.24 7.51 6.65 8.83 3.47 分類を持続を含有量 mg/L 0.60 0.69 0.30 0.26 0.28 8.81 0.34 0.53 0.20 1.00 1.33 0.20 室素含有量 mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 6.09 6.09 0.38 0.57 0.45 0.65 0.88 3.3 47 分別を含まる mg/L 0.79 0.88 0.57 0.45 0.62 0.21 0.47 0.51 0.55 0.88 1.18 0.25 分別を含まる mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 を含まる mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 分別を含まる mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 を含まる mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 を含まる mg/L 1.00 0.7 1 2.2 6.6 2.2 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 0.28 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	52 1. 8 7. 1 1. 68 0. 09 6. 7 ² 0. 62 9. 13
生物化学的酸素要求量 mg/L 15(15) 1.4 1.3 1.3 1.7 1.4 1.5 2.1 1.3 1.5 1.8 2.1 1.0 化学的酸素要求量 mg/L 7.1 7.1 7.1 7.5 7.6 6.5 7.1 7.3 7.1 7.4 7.2 7.9 6.5 万・モニア性霊素含有量 mg/L 0.09 0.15 0.17 0.13 0.07 0.09 0.8 0.07 0.07 0.09 0.17 0.04 di酸性霉素含有量 mg/L 8.46 7.77 6.11 4.31 7.05 6.92 6.17 4.24 7.51 6.65 8.83 3.47 有機性霉素含有量 mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 dig体性霉素含有量 mg/L 16(8) 0.87 0.46 0.66 0.69 0.69 0.81 0.34 0.55 0.95 0.95 9.31 11.9 6.09 dig体性霉素含有量 mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 dig体管术子型概含有量 mg/L 16(8) 0.87 0.46 0.66 0.65 0.59 0.00 0.60 0.69 0.65 0.60 0.69 0.00 0.70 0.09 0.00 0.00 0.00 0.00 0.0	1. § 7. 1. 68 0. 09 6. 74 0. 62 9. 13
化学的酸素要求量	7. 1 1. 68 0. 09 6. 7 ² 0. 62 9. 13
アンモニア性窒素含有量 mg/L 0.09 0.15 0.17 0.13 0.07 0.09 0.08 0.07 0.07 0.09 0.17 0.04 6 6 6 6 mg/L 8.46 7.77 6.11 4.31 7.05 6.92 6.17 4.24 7.51 6.65 8.83 3.47 7 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8	1. 68 0. 09 6. 74 0. 62 9. 13
亜硝酸性窒素含有量 mg/L 8.46 7.77 6.11 4.31 7.05 6.92 6.17 4.24 7.51 6.65 8.83 3.47 有機性窒素含有量 mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 横酸イオン態燐含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.21 0.47 0.51 0.55 0.38 11.8 0.05 横含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.22 8.0 0.57 0.47 0.51 0.55 0.38 11.9 6.09 横酸イオン態燐含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.28 0.56 0.58 0.63 0.49 1.27 0.07 大腸歯酢数 個/m² 1,000 7 1 2 6 6 2 3 3 3 1 1 2 4 17 1 1.5 5 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0. 09 6. 74 0. 62 9. 13
静酸性窒素含有量 mg/L	6. 74 0. 62 9. 13
有機性窒素含有量 mg/L 120(60) 11.1 11.0 9.22 6.22 8.50 9.66 8.35 6.09 9.05 9.31 11.9 6.09 頻酸イオン能燐含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.28 0.51 0.47 0.51 0.55 0.38 1.18 0.05 燐色含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.28 0.56 0.58 0.63 0.49 1.27 0.07 大腸苗野繁 Mg/ca 1,000 7 1 1 2 6 2 6 2 3 3 3 1 1 2 4 1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 62 9. 13
蜜素含有量	9. 13
構酸イオン態燐含有量 mg/L 16(8) 0.87 0.46 0.66 0.53 0.69 0.28 0.56 0.58 0.63 0.49 1.27 0.07 大腸歯群数 (Mg/cm² 1,000 7 1 2 6 2 3 3 3 1 2 4 17 1 1 よう素消費量 mg/L 10 くち	
標合有量	0.48
大腸値群数 個/m² 1,000 7 1 2 6 2 3 3 3 1 2 4 17 1 1 よう素消費量 mg/L	
よう素消費量 mg/L	0. 56
Mode/中が抽出物質含有量 mg/L 10 くち	(
シアン化合物 mg/L 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <th< td=""><td><!--</td--></td></th<>	</td
フェノール類含有量 mg/L 1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.00 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <t< td=""><td><{</td></t<>	<{
鉄含有量 mg/L	<0.0
溶解性鉄含有量 mg/L 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <	<0.50
マンガン含有量 mg/L	<0.10
密解性マンガン含有量 mg/L	<0.10
亜鉛含有量 mg/L 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	<0.10
網含有量 mg/L 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	<0.10
始及びその化合物 mg/L 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	<0.10
カドミウム及びその化合物 mg/L 不検出 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.10
クロム含有量 mg/L 0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.00	<0.0
六価クロム化合物	<0.00
砒素及びその化合物 mg/L 0.05 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.	<0.05
水銀及びアルキル水銀 その他の水銀化合物 mg/L 0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0	<0.0
その他の水銀化合物 mg/L 0.005 (0.0005 (0	<0.005
テトラクロロエチレン mg/L 0.1 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005
アルキル水銀化合物 mg/L 不検出 <0.0005 <0.0005 <0.0005	<0.002
	<0.0005
有機鱗化合物 mg/L 不検出 - - - - - - <0.1 - - - <0.1 <0.1	<0.0005
W.1 W.1	<0.
ポリ塩化ビフェニル mg/L 0.003 <0.0005 <0.0005 <0.0005	<0.0005
ジクロロメタン mg/L 0.2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.02
四塩化炭素 mg/L 0.02 <0.002 <0.002 <0.002	<0.002
1,2-ジクロロエタン mg/L 0.04 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	<0.004
1,1-ジクロロエチレン mg/L 1 <0.02 <0.02 <0.02	<0.02
シス1, 2-ジクロロエチレン mg/L 0.4 <0.04 <0.04 <0.04	<0.04
1,1,1-トリクロロエタン mg/L 3 <0.001 <0.001 <0.001	<0.00
1,1,2-トリクロロエタン mg/L 0.06 <0.006 <0.006 <0.006	<0.006
1, 3-ジクロロプロペン mg/L 0. 02 <0. 002 <0. 002 <0. 002	<0.002
チウラム mg/L 0.06 -	<0.006
シマジン mg/L 0.03 (0.00	< 0.003
チオベンカルブ mg/L 0.2 (0.02 (
ベンゼン mg/L 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	<0.02
セレン及びその化合物 mg/L 0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	<0.02
ほう素及びその化合物 mg/L 10 〈1.0 〈1.0 〈1.0 〈1.0 〈1.0 〈1.0 〈1.0 〈	<0.02 <0.03 <0.03
ふっ素及びその化合物 mg/L 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.1	<0.02 <0.03 <0.03 <1.0
アピースアピータの化合物、亜岬 mg/L 100 9.33 8.87 7.34 5.05 7.56 7.75 6.95 4.81 8.09 7.37 9.95 4.59 酸化合物及び硝酸化合物	<0.02 <0.03 <0.03 <1.0 <0.10
1, 4-ジオキサン mg/L 0.5 <0.05 <0.05 (0.05)	<0.02 <0.03 <0.03 <1.0

表 5 - 2 9 幹線調査分析結果 単位 排除基準 ① ②

	測定項目	単位	排除基準	1	2	3	4	(5)
	採水月日			5月8日	5月8日	5月8日	5月8日	5月8日
	採水時刻			10:00	10:45	11:30	11:40	9:25
	カドミウム及びその化合物	mg/L	不検出	<0.001	<0.001	<0.001	<0.001	<0.001
	シアン化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01
	有機燐化合物	mg/L	不検出	<0.1	<0.1	<0.1	<0.1	<0.1
	鉛及びその化合物	mg/L	0.1	<0.01	<0.01	<0.01	<0.01	<0.01
	六価クロム化合物	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01
	砒素及びその化合物	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005
	水銀及びアルキル水銀	mg/L	0.005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	その他の水銀化合物 アルキル水銀化合物	mg/L	不検出	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	ポリ塩化ビフェニル	mg/L	0.003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
~l.	トリクロロエチレン	mg/L	0. 1	<0.002	<0.002	<0.002	<0.002	<0.002
政	テトラクロロエチレン	mg/L	0. 1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
<i>△ h</i>	** 1:	mg/L	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02
令负	四塩化炭素	mg/L	0. 02	<0.002	<0.002	<0.002	<0.002	<0.002
ブ II	■ 1,2-ジクロロエタン	mg/L	0. 04	<0.004	<0.004	<0.002	<0.004	<0.002
	1,1-ジクロロエチレン	mg/L	1	<0.02	<0.004	<0.004	<0.004	<0.02
完 日	シス1, 2-ジクロロエチレン	mg/L	0. 4	<0.02	<0.02	<0.02	<0.04	<0.02
	1, 1, 1-トリクロロエタン	-	3	<0.001	<0.001	<0.001	<0.001	<0.001
め単	f 1, 1, 2-トリクロロエタン	mg/L						
~	1,3-ジクロロプロペン	mg/L	0.06	<0.006	<0.006	<0.006	<0.006	<0.006
る事		mg/L	0. 02	<0.002	<0.002	<0.002	<0.002	<0.002
	チウラム シマジン	mg/L	0.06	<0.006	<0.006	<0.006	<0.006	<0.006
物質	f	mg/L	0. 03	<0.003	<0.003	<0.003	<0.003	<0.003
	テオペンガルノ	mg/L	0. 2	<0.02	<0.02	<0.02	<0.02	<0.02
質	ベンゼン	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01
	セレン及びその化合物	mg/L	0. 1	<0.01	<0.01	<0.01	<0.01	<0.01
	ほう素及びその化合物	mg/L	10	<1.0	<1.0	<1.0	<1.0	<1.0
	ふっ素及びその化合物	mg/L	1	0. 20	0. 12	0. 11	<0.10	0. 14
	1,4-ジオキサン	mg/L	0.5	<0.05	<0.05	<0.05	<0.05	<0.05
	フェノール類含有量	mg/L	1	<0.50	<0.50	<0.50	<0.50	<0.50
	銅含有量	mg/L	1	<0. 10	<0.10	<0.10	<0.10	<0.10
	亜鉛含有量	mg/L	1	0. 11	<0.10	<0. 10	<0.10	0. 12
	溶解性鉄含有量	mg/L	1	<0.10	<0.10	<0.10	0. 11	<0.10
	溶解性マンガン含有量	mg/L	1	<0.10	<0.10	<0.10	<0.10	<0.10
	クロム含有量	mg/L	0.5	<0.05	<0.05	<0.05	<0.05	<0.05
Az	アンモニア性窒素、亜硝酸性窒素 及び硝酸性窒素含有量	mg/L	380	16. 1	19. 8	20. 4	20. 4	14. 2
条例如	生物化学的酸素要求量	mg/L	600	220	190	78	160	480
でき		mg/L	600	320	240	100	190	360
定すめ		mg/L	30	12	9	<5	9	15
る物質	水素イオン濃度	_	5~9	7. 00	6. 83	6. 90	6. 67	6. 98
質	水温	$^{\circ}$ C	45	18.0	19. 0	19.0	21.0	19. 0
	よう素消費量	mg/L	220	12	13	9	11	12
その作	色	_		白濁	白濁	微白濁	白濁	白濁
-(0)	化学的酸素要求量	mg/L		130	120	51	110	180
備考	番号 幹線名	上流市町	丁村名					
	① 桂川1号幹線	西桂町、	富士吉田市	†				
	② 桂川1号幹線	都留市、	西桂町、富	富士吉田市				
	③ 桂川1号幹線	大月市、	都留市、西	5桂町、富士	:吉田市			
	④ 桂川 2 号幹線	上野原下	Ħ					
	⑤ 桂川1号幹線	富士吉日	目市					

表5-30 反応タンク運転状況

項	目	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
流入	最大	8, 496	8, 112	9, 825	8, 095	12, 319	8,036	8, 783	7, 989	7, 700	7, 809	7, 937	7, 934	12, 319
下 水 量	最小	6, 717	6, 528	6, 559	6, 548	6, 498	6, 457	6,631	6, 574	6,842	6, 551	6, 768	6, 795	6, 457
(m³/目)	平均	7, 393	7, 364	7, 645	7, 369	7, 293	7, 254	7, 444	7, 397	7, 398	7, 398	7, 534	7, 392	7, 405
反応タンク	最大	9, 096	8, 721	10, 429	8, 783	12, 899	8,680	9, 360	8, 544	8, 291	8, 405	8, 528	8, 517	12, 899
流入水量	最小	7, 341	7, 118	7, 200	7, 177	7, 073	7, 046	7, 248	7, 149	7, 427	7, 119	7, 378	7, 430	7,046
(m³/目)	平均	8,004	7, 970	8, 248	7, 965	7,878	7,842	8,039	7, 969	7, 977	7, 964	8, 110	7, 979	7, 994
返送	最大	3, 259	3, 166	3, 781	3, 221	4, 546	3, 156	3, 361	3, 113	3, 023	3, 079	3, 142	3, 140	4, 546
汚 泥 量	最小	2, 783	2, 693	2, 782	2,750	2, 685	2, 742	2,761	2, 725	2, 763	2, 732	2,811	2, 789	2,685
(m³/目)	平均	2, 949	2, 945	3, 024	2, 951	2, 936	2, 923	2, 968	2, 935	2, 935	2, 932	2, 986	2, 978	2, 955
返送	最大	38. 4	38. 5	38. 6	38. 3	39. 3	38. 9	38. 7	38. 2	38. 1	38. 6	38.5	38. 2	39. 3
汚 泥 率	最小	35.8	36. 1	35. 3	35. 6	34.8	35. 6	35. 9	36. 3	36.0	35. 0	36.4	35. 7	34. 8
(%)	平均	36. 9	37. 0	36. 7	37. 1	37. 3	37. 3	37. 1	36. 9	36.8	36.8	36.8	37. 3	37. 0
余 剰	最大	63	56	61	60	61	54	63	60	61	64	60	61	64
汚 泥 量	最小	54	44	19	49	44	38	33	44	44	24	45	49	19
(m³/目)	平均	57	53	50	52	54	48	51	58	58	51	58	58	54
送 風 量	最大	26, 770	25, 160	24, 861	25, 064	23, 476	24, 959	24, 778	25, 604	26, 736	27, 276	27, 400	26, 443	27, 400
	最小	22, 758	22, 228	21, 790	22, 439	19, 609	18, 849	22, 205	21, 158	24, 798	23, 550	22, 791	23, 579	18, 849
(m³/目)	平均	24, 738	23, 789	23, 040	23, 565	21, 565	22, 346	24, 194	23, 539	25, 775	25, 255	25, 750	25, 083	24, 046
送 風	最大	3. 4	3. 2	3. 1	3. 2	3. 2	3. 5	3.4	3. 4	3.4	3.8	3.4	3. 5	3.8
倍 率	最小	2.8	2.7	2. 4	2. 7	1.7	2. 2	2.5	2.6	3. 1	2. 9	3.0	2. 9	1.7
(倍)	平均	3. 1	3.0	2.8	3.0	2.8	2. 9	3.0	3. 0	3. 2	3. 2	3.2	3. 1	3.0
滞留	最大	16. 5	17.0	16.8	16. 9	17. 1	17. 2	16. 7	17.0	16. 3	17. 0	16.4	16. 3	17. 2
時 間	最小	13. 3	13. 9	11.6	13.8	9. 4	14. 0	12.9	14. 2	14. 6	14. 4	14. 2	14. 2	9. 4
(H r)	平均	15. 2	15. 2	14.8	15. 2	15. 6	15. 5	15. 2	15. 2	15. 2	15. 3	15.0	15. 2	15. 2

表5-31 反応タンク試験結果(1)

	_					10		文/い / ~	/ 四次/			1	T		
項	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年最大最小平均
水温	=	最大	20.0	22.0	23. 0	25.0	25. 5	25. 5	24.5	22. 5	20.0	17. 5	17.0	18.5	25. 5
(°C)	ш	最小	18.0	20.0	21. 5	23.0	25.0	24. 5	22. 5	20. 5	18.0	17.0	16. 5	16. 5	16. 5
(- /		平均	19.0	21.0	22. 2	23.8	25. 2	25. 1	23. 7	21.6	19. 2	17. 1	16. 9	17. 3	21.0
		最大	6. 22	6.16	6.21	6. 25	6. 25	6. 37	6. 46	6.21	6. 21	6. 16	6. 17	6.21	6. 46
	ML	最小	5. 93	5. 99	5. 99	5. 91	6. 10	6. 09	6. 16	6.03	6.05	6.00	6.00	5. 99	5. 91
рΗ		平均	6.08	6.08	6.09	6. 13	6. 18	6. 23	6. 36	6. 13	6. 13	6.05	6.08	6.08	6. 14
pii		最大	6. 39	6.40	6.38	6. 42	6. 44	6. 49	6. 58	6.40	6.41	6.39	6. 42	6.45	6. 58
	RS	最小	6. 20	6. 29	6. 25	6. 21	6. 31	6. 31	6.31	6. 29	6. 24	6. 25	6. 30	6. 29	6. 20
		平均	6.31	6.33	6.31	6.36	6.36	6.40	6.46	6.34	6.34	6.33	6.37	6.36	6. 36
DO		最大	1.4	1.6	1. 7	1.5	1.8	2.0	1.2	1. 7	1.5	1.6	1.6	1.7	2.0
(mg/L)		最小	0.8	1. 1	1.0	0.9	1.1	0.6	0.7	0.7	0.6	1.0	1. 1	1.1	0.6
(mg/ L)		平均	1.2	1.3	1. 4	1.2	1.5	1.1	0.8	1.2	1.2	1.3	1.4	1.3	1.2
MLSS	,	最大	2, 500	2, 360	2, 210	2,370	2, 290	2, 360	2, 350	2, 310	2,400	2, 390	2, 320	2, 300	2, 500
(mg/L))	最小	2, 170	1,990	2,020	2, 120	1,460	1,940	2,070	1,700	1,950	2, 110	2, 120	2,060	1, 460
(IIIg/L)		平均	2, 330	2, 150	2, 110	2, 240	2,050	2, 150	2, 210	2, 120	2, 250	2, 220	2, 210	2, 200	2, 190
MI 17.0	0	最大	1,920	1,790	1,640	1,800	1,720	1,750	1,770	1,740	1,870	1,830	1,810	1,780	1, 920
MLVS (mg/L)	5	最小	1,650	1,500	1,520	1,590	1,090	1, 420	1,550	1, 280	1, 490	1,610	1,620	1,590	1, 090
(IIIg/L)		平均	1,790	1,630	1,580	1,690	1,530	1,600	1,650	1,600	1,720	1,700	1,700	1,690	1,660
-	最大	77.4	76. 6	76. 2	77.3	75. 7	75. 2	75. 7	76. 1	80.3	78. 2	78.0	77.8	80. 3	
MLVSS/MLS (%)	22	最小	75. 7	74. 9	74. 2	74. 7	73. 7	73. 1	73.3	73. 9	74. 7	75. 7	75.0	75. 3	73. 1
(70)		平均	76.4	75. 9	75. 1	75. 5	74.8	74. 3	74.6	75. 4	76. 3	76. 6	76.8	76. 7	75. 7
		最大	40	36	38	34	34	40	42	44	46	50	46	44	50
	ML	最小	32	28	28	30	28	34	36	34	36	42	42	38	28
S V 3 0		平均	36	32	30	32	33	36	39	40	43	45	43	40	37
(%)		最大	99	99	99	99	99	99	99	99	99	99	99	99	99
	RS	最小	96	96	96	97	93	97	97	97	97	97	99	98	93
		平均	99	99	98	99	98	99	99	99	99	99	99	99	99
		最大	170	170	180	150	190	180	190	200	200	220	220	200	220
	ML	最小	140	140	130	130	140	150	160	170	180	180	190	170	130
SVI		平均	150	150	140	140	160	170	180	190	190	200	200	180	170
(mL/g)		最大	200	180	180	180	220	210	190	190	190	190	170	190	220
	RS	最小	87	91	100	100	110	110	110	100	100	99	91	99	87
		平均	130	130	140	140	150	140	140	140	150	140	130	140	140
BOD-SS		最大	0.07	0.08	0.07	0.08	0.07	0.09	0.07	0.11	0.09	0.08	0.10	0.10	0.11
負荷		最小	0.07	0.06	0.06	0.06	0.06	0.06	0.05	0.07	0.06	0.07	0.07	0.07	0.05
(kg/kg·∃	1)	平均	0.07	0.07	0.07	0.07	0.06	0. 07	0.06	0.09	0.08	0.07	0.08	0.08	0.07
SRT(E	1)	平均	26. 7	25. 6	29. 5	29. 4	29. 4	32. 1	29. 3	24. 8	29. 6	30. 3	24. 5	25. 3	28. 0
※年最大最小	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	匀の欄の	の平均につい	ては、月間≤	平均値の平均	値である。						1			

※牛敢犬最小平均の欄の平均については、月間平均値の平均値である。

表5-32 反応タンク試験結果(2)

								11	U	0 2		$\mathcal{N}^{\prime\prime}$	' / '		1- (10)/	<u>/PH /T</u>	• (<i></i>										
項目		4	月	5	月	6	月	7	月	8	月	9	月	1 () 月	1 1	. 月	1 2	2月	1	月	2	月	3	月	最大	最小	平均
酸素利用速度 Rr(mg/L·H)	_	34. 2	7. 2	7. 9	14.0	8.3	10.5	9.7	8. 9	9.3	8. 9	7.4	9.3	10.3	27.0	6.0	7.8	31. 9	6. 1	5. 1	6.6	6.6	7. 9	8.9	6.8	34. 2	5. 1	11. 1
Rr (mg/L·H)	ATU	13. 7	2. 9	3.6	6. 3	3.9	4. 9	4.2	4.0	4. 3	4. 2	3. 7	4.0	4.8	11.8	2.8	3. 5	13. 4	2.6	2. 2	2. 9	2. 9	3. 4	3.9	3. 2	13. 7	2. 2	4. 9
酸素利用速度		16. 8	6. 7	7.4	9. 9	8.0	10. 4	8.9	8. 3	8. 1	8.6	6. 9	7.8	7.4	15.8	5. 6	6.7	14. 6	5.8	4. 9	6. 1	6. 5	7. 3	7.9	6. 3	16.8	4. 9	8. 4
係数Kr(mg/g·H)	ATU	6. 7	2. 7	3. 4	4. 5	3.7	4.8	3. 9	3. 7	3.8	4.0	3. 5	3. 4	3. 4	6.9	2. 5	3. 0	6. 1	2. 5	2. 2	2. 7	2. 9	3. 1	3. 5	2. 9	6.9	2. 2	3. 7
備考	備 考 ATU添加量10mg/L、酸素利用速度係数はMLSSによる。																											

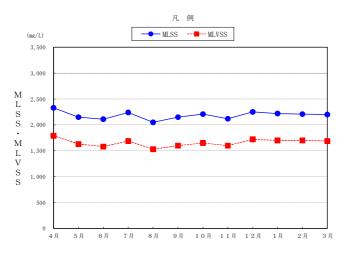


図5-16 反応タンクの管理状況(1)

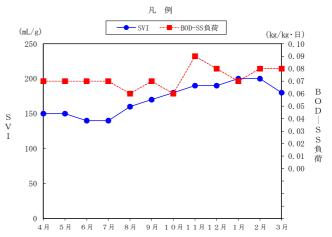
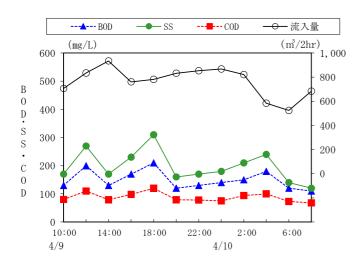


図5-17 反応タンクの管理状況(2)

表5-33 反応タンク生物試験結果


						表記	5 - 33	反応	タンク生	E物試験	結果					(単位:個		
	分		び生物名	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最大	最小	平均
	鞭	動物性	Bodo•Monas	660	1, 210	1, 450	1, 370	1, 400	1, 400	780	1,000	810	750	1, 120	680	1, 450	660	1,053
	毛		Peranema	160	160	120		40	40	50	80	60	10	370	20	370	0	93
	虫類	植物性	Entoshiphon	70	280	160	90	160	90	210	200	130	60	840	120	840	60	201
	類		Poteriodendron					60								60	0	5
原		原口目	Prorodon	670	300	600	320	430	250	490	780	300	160	520	330	780	160	429
	繊	異毛目	Spirostomum	40	110	250		50	130	140	80	20	80	140		250	0	87
	心以	***	Metopus	60							30					60	0	8
			Chilodonella	10	60	80	70	10	70	30	50	130	140	70	80	140	10	67
		裸口目	Amphileptus	30	50		10		20	30	20	40		20	170	170	0	33
生	毛	жнн	Trachelophyllum	20								10	80	40		80	0	13
			Litonotus		10	50	50	10	10		20	10	50	140	30	140	0	32
			Aspidisca	3, 310	5,030	3, 650	2,050	2, 170	1,650	2, 940	2,890	4,020	2, 960	5, 020	2, 580	5, 030	1,650	3, 189
		下毛目	Euplotes					20	10		40	220	30	10	40	220	0	31
	虫		Chaetospira			20			90		40	120		10		120	0	23
±4.			Vorticella	1,370	380	570	1,070	430	780	1, 190	670	1, 230	570	890	2, 330	2, 330	380	957
動		縁毛目	Opercularia	880	1,760	690	900	580	690	320	2, 230	2, 780	1, 410	3, 420	2, 300	3, 420	320	1, 497
			Vaginicola						10						20	20	0	3
	類		Tokophrya		10	30	60	40				10			30	60	0	15
	//	吸 管	Podophrya			10							70			70	0	7
			Acineta	200	80	50	20	80	70	100	20	150	80	70	20	200	20	78
物			Arcella	860	2, 730	2, 850	2, 510	2, 750	1, 140	1,080	1,050	1, 250	730	1, 170	1,080	2, 850	730	1,600
	根足	有 殼	Euglypha	120	60	40		160	150	80	40	50			10	160	0	59
	虫	日 以	Pyxidicula	290	350	570	320	120	440	250	450	410	140	60	30	570	30	286
	類		Difflugia		20											20	0	2
		無 殼	Amoeba	30	70	60	30	30	30	10	20	40			10	70	0	28
			Lecane			120						10		10		120	0	12
後	動		Colurella	90	240	340	80			50	30	10	50	80	20	340	0	83
	273	輪虫類	Lepadella												40	40	0	3
			Rotaria	170	120	120	90	200	20	120	100	100	60	50	90	200	20	103
生	1±/m		Philodina	10	80	40		60	20	90	50	10		50	30	90	0	37
1	120		Chaetonotus	130		110	40	310	190	50	80	110	110	80	100	310	0	109
			Dyplogaster			10								10		10	0	2
そ(也の生				10										10	0	1
総	4		数	9, 180	13, 110	12,000	9,080	9, 110	7, 300	8,010	9, 970	12,030	7, 540	14, 190	10, 160	14, 190	7, 300	10, 140
		月泥 生		8, 460	11,760	10, 340	7, 560	7, 660	5, 790	7, 190	8,880	11,030	6, 520	12, 810	9, 360	12, 810	5, 790	8, 947
活性	汚沂	尼性生物	(%)	92.2	89. 7	86.2	83. 3	84. 1	79. 3	89.8	89. 1	91.7	86. 5	90.3	92. 1	92. 2	79. 3	87.8

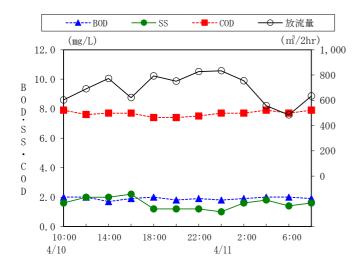
桂川流域下水道

表 5-3 4 流入水及び放流水の経時変化(4/9~4/11)

				流入	水			
		流入量	В	OD	S	S	CO	OD
採水	時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
			(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
4/9	10:00	707	130	92	170	120	80	57
	12:00	835	200	167	270	225	110	92
	14:00	935	130	122	170	159	79	74
	16:00	761	170	129	230	175	98	75
	18:00	782	210	164	310	242	120	94
	20:00	833	120	100	160	133	79	66
	22:00	854	130	111	170	145	78	67
4/10	0:00	868	140	122	180	156	75	65
	2:00	821	150	123	210	172	94	77
	4:00	585	180	105	240	140	100	59
	6:00	525	120	63	140	74	73	38
	8:00	684	110	75	120	82	68	47

			放 流	水			
	放流量	Bo	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
4/10 10:00	603	2.0	1.2	1.6	1.0	7.9	4.8
12:00	690	2.0	1.4	2.0	1.4	7.6	5. 2
14:00	773	1.7	1.3	2.0	1.5	7.7	6.0
16:00	621	1.9	1.2	2.2	1.4	7.7	4.8
18:00	793	2.0	1.6	1.2	1.0	7.4	5.9
20:00	752	1.8	1.4	1.2	0.9	7.4	5. 6
22:00	827	1. 9	1.6	1.2	1.0	7.5	6.2
4/11 0:00	834	1.8	1.5	1.0	0.8	7.7	6.4
2:00	754	1.9	1.4	1.6	1.2	7.7	5.8
4:00	557	2.0	1.1	1.8	1.0	7.9	4.4
6:00	484	2.0	1.0	1.4	0.7	7.7	3.7
8:00	634	1. 9	1.2	1.6	1.0	7.9	5.0

 $(m^3/2hr)$ (kg) 400 1,000 800 В 300 0 D S 400 200 S 200 \mathbf{C} 0 0 100 D 10:00 14:00 18:00 22:00 2:00 4/94/10

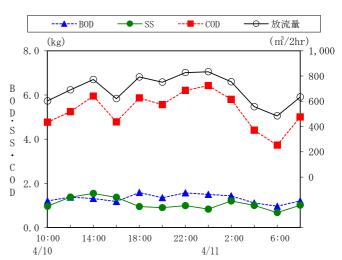

------ COD

一一 流入量

---**_**--- BOD

図5-18 流入水濃度の経時変化 (4/9~4/10)

図5-19 流入水負荷量の経時変化 (4/9~4/10)



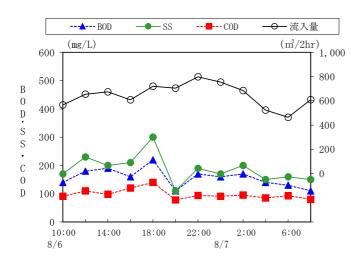

図5-20 放流水濃度の経時変化(4/10~4/11)

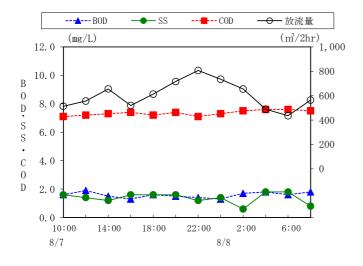
図5-21 放流水負荷量の経時変化 (4/10~4/11)

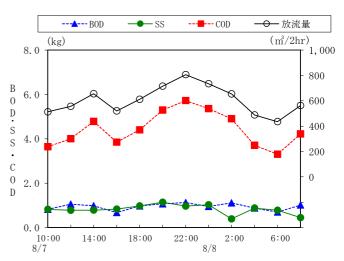
表 5-3 5 流入水及び放流水の経時変化 (8/6~8/8)

				\d-	1			
				流入	水			
		流入量	Bo	OD	S	S	CO	OD
採水	時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
			(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
8/6	10:00	567	140	79	170	96	91	52
	12:00	655	180	118	230	151	110	72
	14:00	674	190	128	200	135	98	66
	16:00	608	160	97	210	128	120	73
	18:00	721	220	159	300	216	140	101
	20:00	704	110	77	110	77	78	55
	22:00	799	170	136	190	152	94	75
8/7	0:00	755	160	121	170	128	91	69
	2:00	684	170	116	200	137	95	65
	4:00	524	140	73	150	79	85	45
	6:00	464	130	60	160	74	93	43
	8:00	609	110	67	150	91	80	49

				放 流	水			
		放流量	Bo)D	S	S	CO)D
採水時	間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
			(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
8/7 10	:00	513	1.6	0.8	1.6	0.8	7. 1	3.6
12	:00	556	1.9	1.1	1.4	0.8	7. 2	4.0
14	:00	655	1.5	1.0	1.2	0.8	7. 3	4.8
16	:00	520	1.3	0.7	1.6	0.8	7.4	3.8
18	:00	612	1.6	1.0	1.6	1.0	7. 2	4.4
20	:00	715	1.5	1.1	1.6	1.1	7.4	5. 3
22	:00	806	1.4	1.1	1.2	1.0	7. 1	5. 7
8/8 0	:00	734	1.3	1.0	1.4	1.0	7. 3	5.4
2	:00	654	1.7	1.1	0.6	0.4	7. 5	4. 9
4	:00	488	1.8	0.9	1.8	0.9	7.6	3. 7
6	:00	435	1.6	0.7	1.8	0.8	7. 6	3. 3
8	:00	563	1.8	1.0	0.8	0.5	7. 5	4. 2

—— 流入量 $(m^3/2hr)$ (kg) 400 1,000 800 B 0 D S S C 0 300 600 400 200 200 100 D 10:00 14:00 18:00 22:00 2:00 6:00 8/7 8/6


---- COD


-- SS

---**-**---- BOD

流入水濃度の経時変化 (8/6~8/7) 図 5 - 22

図5-23 流入水負荷量の経時変化 (8/6~8/7)

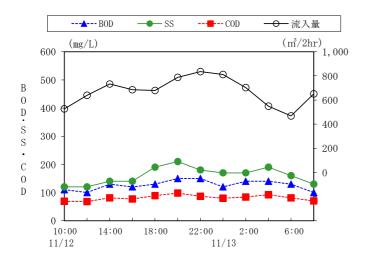
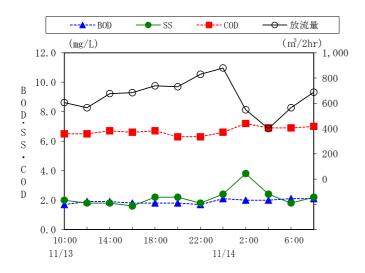

放流水濃度の経時変化 (8/7~8/8) 図 5 - 24

図5-25 放流水負荷量の経時変化 (8/7~8/8)

表 5-3 6 流入水及び放流水の経時変化(11/12~11/14)

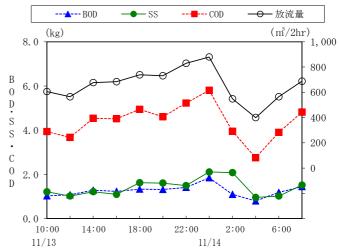
			流入	水			
	流入量	Bo	OD	S	S	CO	OD
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
11/12 10:00	526	110	58	120	63	69	36
12:00	639	100	64	120	77	68	43
14:00	732	130	95	140	102	81	59
16:00	685	120	82	140	96	77	53
18:00	679	130	88	190	129	89	60
20:00	788	150	118	210	165	98	77
22:00	835	150	125	180	150	87	73
11/13 0:00	811	120	97	170	138	80	65
2:00	703	140	98	170	120	84	59
4:00	549	140	77	190	104	92	51
6:00	468	130	61	160	75	81	38
8:00	650	100	65	130	85	70	46


		,	放 流	水			
	放流量	BO	OD	S	S	CO)D
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
11/13 10:00	606	1.7	1.0	2.0	1. 2	6. 5	3. 9
12:00	565	1.9	1. 1	1.8	1.0	6. 5	3.7
14:00	677	1.9	1. 3	1.8	1.2	6. 7	4.5
16:00	684	1.8	1. 2	1.6	1.1	6.6	4.5
18:00	738	1.8	1. 3	2.2	1.6	6.7	4.9
20:00	731	1.8	1. 3	2. 2	1.6	6.3	4.6
22:00	829	1.7	1.4	1.8	1.5	6.3	5.2
11/14 0:00	879	2. 1	1.8	2.4	2. 1	6.6	5.8
2:00	548	2.0	1. 1	3.8	2. 1	7. 2	3.9
4:00	399	2.0	0.8	2.4	1.0	6.9	2.8
6:00	565	2. 1	1.2	1.8	1.0	6. 9	3.9
8:00	688	2. 1	1.4	2.2	1.5	7. 0	4.8

---****--- BOD ----- COD ── 流入量 **-**→-SS (m³/2hr) 400 1,000 800 В 300 0 600 D S S 400 200 200 С 0 100 D 0 10:00 14:00 18:00 22:00 2:00 11/1211/13

図5-26 流入水濃度の経時変化 (11/12~11/13)

図5-27 流入水負荷量の経時変化 (11/12~11/13)



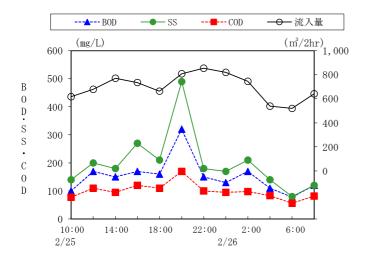

図5-28 放流水濃度の経時変化 (11/13~11/14)

図5-29 放流水負荷量の経時変化 (11/13~11/14)

表 5-3 7 流入水及び放流水の経時変化(2/25~2/27)

		ì	流 入	水			
	流入量	Bo)D	S	S	CO)D
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)
2/25 10:00	617	100	62	140	86	78	48
12:00	679	170	115	200	136	110	75
14:00	771	150	116	180	139	95	73
16:00	735	170	125	270	198	120	88
18:00	663	160	106	210	139	110	73
20:00	808	320	259	490	396	170	137
22:00	854	150	128	180	154	100	85
2/26 0:00	820	130	107	170	139	95	78
2:00	745	170	127	210	156	98	73
4:00	539	110	59	140	75	83	45
6:00	520	78	41	80	42	56	29
8:00	641	120	77	120	77	82	53

放 流 水													
	放流量	В	OD	S	S	CO	OD						
採水時間	$(m^3/2Hr)$	濃度	負荷量	濃度	負荷量	濃度	負荷量						
		(mg/L)	(kg)	(mg/L)	(kg)	(mg/L)	(kg)						
2/26 10:00	570	1.4	0.8	1.8	1.0	7. 1	4.0						
12:00	621	1.4	0.9	1.2	0.7	7.3	4. 5						
14:00	635	1. 3	0.8	1.4	0.9	7.4	4. 7						
16:00	600	1.3	0.8	1.2	0.7	7.2	4.3						
18:00	640	1. 2	0.8	1.0	0.6	7.2	4.6						
20:00	659	1.4	0.9	1.6	1. 1	7.3	4.8						
22:00	784	1.3	1.0	1.8	1.4	7.3	5. 7						
2/27 0:00	771	1.3	1.0	1.6	1.2	7.0	5.4						
2:00	663	1.3	0.9	1.4	0.9	7.2	4.8						
4:00	465	1.3	0.6	1.0	0.5	7.5	3.5						
6:00	408	1.4	0.6	1.6	0.7	7.4	3.0						
8:00	544	1. 4	0.8	2. 2	1. 2	7.3	4.0						

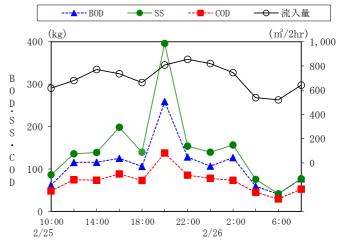
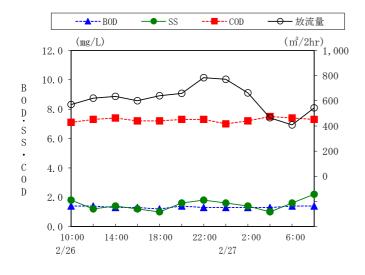



図5-30 流入水濃度の経時変化 (2/25~2/26)

図5-31 流入水負荷量の経時変化 (2/25~2/26)

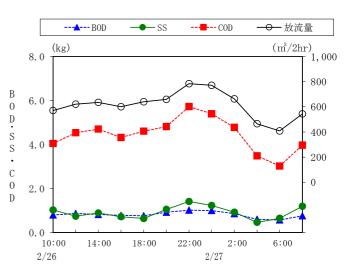


図5-32 放流水濃度の経時変化 (2/26~2/27)

図 5-33 放流水負荷量の経時変化 (2/26~2/27)

表 5 - 3 8 汚泥処理運転状況

						1	1		衣り				E LE PLA	<i>v</i> • <i>v</i> –	1					
	Į	頁	目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均	計
生	E	引 形	分	(%)	0.53	0. 52	0.53	0.62	0. 43	0. 55	0.40	0.40	0.41	0.48	0.48	0.48	0.62	0.40	0. 49	_
汚泥	弓	抜	量	(m³)	9, 330	9, 642	9, 026	9, 528	9, 641	9, 265	9, 640	9, 330	9, 611	9,640	8, 678	9,611	9, 642	8,678	9, 412	112, 942
沙丘	1	副形物	加量	(kg)	49, 419	50, 482	47, 768	58, 986	41, 585	50, 980	38, 256	37, 479	39, 870	46, 154	42, 001	46, 125	58, 986	37, 479	45, 759	549, 105
重縮	E	引 形	分	(%)	4. 44	3. 95	3.80	2.92	2.84	2.54	3. 07	3. 52	4.06	4.85	4. 97	4.81	4. 97	2. 54	3. 82	_
力汚	引弓	抜	量	(m³)	898.7	970.8	914. 5	1, 216. 5	1, 199. 3	1, 143. 5	1,028.6	912.5	859.6	708. 7	684. 3	775. 5	1, 216. 5	684.3	942.7	11, 312. 5
濃派	Î [団形物	加量	(kg)	39, 911	38, 376	34, 738	35, 578	34, 097	29, 081	31, 609	32, 100	34, 919	34, 399	33, 988	37, 289	39, 911	29, 081	34, 674	416, 085
余	E	引 形	分	(%)	1.09	1.00	0.93	0.91	0.82	0.88	0.92	0.94	1.09	1. 07	1.04	1.02	1.09	0.82	0. 98	_
剰汚	弓	抜	量	(m³)	1,714	1,650	1,510	1,626	1,675	1, 439	1, 588	1,729	1,802	1, 568	1,632	1,808	1,808	1, 439	1,645	19, 741
泥	1	副形物	加量	(kg)	18, 724	16, 429	14, 039	14, 760	13, 743	12,663	14, 579	16, 249	19, 707	16, 824	16, 966	18, 438	19, 707	12, 663	16, 093	193, 121
濃性	ŧ E	ョ形	分	(%)	1. 11	1.00	1.00	0.97	0.85	0.89	0.97	0. 99	1.04	1.08	1.09	1. 01	1. 11	0.85	1.00	_
濃縮機	付	共 給	量	(m³)	1, 736	1, 681	1,541	1, 661	1, 716	1, 476	1,626	1, 761	1,821	1, 586	1, 656	1,836	1,836	1, 476	1,674	20, 093
機派	1 1	副形物	加量	(kg)	19, 295	16, 864	15, 360	16, 115	14, 641	13, 119	15, 815	17, 435	19, 016	17, 063	18, 105	18, 545	19, 295	13, 119	16, 781	201, 373
高分(涯	些	度	(%)	0. 20	0. 20	0. 20	0.20	0. 20	0. 20	0.20	0. 20	0. 20	0.20	0.20	0. 20	0. 20	0. 20	0. 20	_
子濃凝縮		共 給	量	(m³)	22. 99	22. 77	20.80	23.73	21. 30	20. 59	23. 08	24. 08	24. 16	19. 77	19. 52	21.44	24. 16	19. 52	22. 02	264. 23
集 剤	毐	甚 注	率	(%)	0.25	0. 28	0.28	0.31	0.30	0.32	0. 29	0. 28	0. 26	0. 24	0.22	0. 23	0.32	0. 22	0. 27	_
脱供	ŧ E	ョ形	分	(%)	4. 15	3. 85	3. 77	3. 26	3. 01	2. 68	2. 92	3. 23	3. 49	4. 09	4. 22	4. 31	4. 31	2. 68	3. 58	_
脱水機	付	共 給	量	(m³)	1, 260. 3	1, 285. 5	1, 203. 1	1, 539. 3	1, 481. 7	1, 421. 9	1, 403. 3	1, 260. 2	1, 225. 8	1,069.1	1,048.2	1, 144. 2	1, 539. 3	1,048.2	1, 278. 6	15, 342. 6
燈派	2 2	副形物	加量	(kg)	52, 288	49, 543	45, 321	50, 196	44, 604	38, 157	41,036	40, 726	42, 816	43, 702	44, 227	49, 284	52, 288	38, 157	45, 158	541, 900
高分(渡	豊	度	(%)	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	_
子脱凝水		共 給	量	(m³)	127. 4	125. 2	123.8	162.8	131.0	119. 3	112.8	113. 5	131. 1	117. 2	115. 4	131.3	162. 8	112.8	125. 9	1,510.8
集 剤	毐	甚 注	率	(%)	0.73	0.76	0.82	0.97	0.88	0. 94	0.82	0.84	0.92	0.80	0.78	0.80	0. 97	0.73	0.84	_
脱水	2	3 水	率	(%)	68.0	68.4	68. 9	69. 1	67.5	69. 0	67. 7	68. 3	68.6	68. 3	68. 2	68. 1	69. 1	67. 5	68.3	_
ホケー		ケー	キ量	(t)	152. 94	144. 06	134. 68	145. 76	134. 73	114. 41	125. 66	127. 64	140. 36	140.72	140.74	147. 88	152. 94	114. 41	137. 47	1, 649. 58
キ	E	副形物	加量	(kg)	48, 941	45, 523	41, 885	45, 040	43, 787	35, 467	40, 588	40, 462	44, 073	44, 608	44, 755	47, 174	48, 941	35, 467	43, 525	522, 304

	表 5 - 3 9	汚泥中試験、	汚泥返流水試験分析結身
--	-----------	--------	-------------

_				10	5-3	<u> </u>	5兆中	<u> 訊駛、</u>	1716	区/ル/ハ	此例为	が打結さ	↖					
		項目		4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	最 大	最 小	平 均
	重	水素イオン濃度	C.11	4.80	4. 79	4. 79	5.04	5.04	4.87	4. 99	5.02	4. 94	5. 10	5. 12	5. 14	5. 14	4. 79	4. 97
	力汚 濃泥	固形分(%)		3. 97	3. 50	3. 65	3. 22	2.76	2. 42	3. 01	3. 15	3. 55	5. 11	4. 67	4.40	5. 11	2.42	3. 62
	縮	有機分(%)		91.6	91.0	90.3	90. 2	91.0	89. 1	90.9	91.0	91.0	91.7	91. 9	91.3	91. 9	89. 1	90.9
\ 	機	水素イオン濃度	(* 1)	6. 38	6. 46	6.40	6.44	6. 49	6.50	6. 52	6. 42	6. 39	6.40	6. 43	6.44	6. 52	6.38	6. 44
汚泥	械汚 濃泥	固形分(%)		3. 98	3. 95	3. 97	3.87	4. 30	3. 57	3. 38	3. 75	3. 89	3. 61	3.85	3.84	4.30	3. 38	3.83
中	縮	有機分(%)		76. 5	76. 1	74. 6	74. 7	75. 9	74. 1	74.8	75. 3	76. 5	76. 9	76. 7	76. 5	76. 9	74. 1	75. 7
中試験	脱供	水素イオン濃度	ŧ	5. 07	4. 99	4. 88	5. 20	5. 02	5. 01	5. 18	5. 08	5. 13	5. 25	5. 25	5. 32	5. 32	4.88	5. 12
	脱水機供給汚泥	固形分(%)		3. 98	3. 58	3.64	3.30	2. 90	2.64	2. 98	3. 25	3. 53	4. 16	4. 22	4. 14	4. 22	2.64	3. 53
		有機分(%)		86. 3	86. 1	85. 2	85. 1	85. 5	84. 1	85. 4	85.3	85. 6	86. 5	87. 1	86. 1	87. 1	84. 1	85.7
	ゲール	含水率(%)		66.8	69.5	68. 0	68. 2	67. 4	68.6	67.8	68.4	68.6	67.7	68.8	67. 1	69. 5	66.8	68. 1
	水キ	有機分(%)		87.7	87. 1	86.6	86. 1	86. 7	85. 2	86. 7	86.6	86. 9	87.8	88.3	87.4	88. 3	85. 2	86.9
		水素イオン濃度	1.0	5. 90	5. 93	5. 68	5. 61	5. 93	5. 67	5. 96	6.03	6.06	6.06	6. 10	6. 16	6. 16	5. 61	5. 92
	重分	アルカリ度(mg	g/L)	138	139	130	138	164	168	161	153	146	148	161	160	168	130	151
	重力濃縮	浮遊物質量(mg	g/L)	460	430	490	540	380	410	310	270	300	310	310	240	540	240	370
	縮	生物化学的酸素	要求量(mg/L)	790	810	820	930	630	730	510	530	560	550	550	490	930	490	660
		化学的酸素要求	t量(mg/L)	270	230	240	360	230	240	190	190	200	200	180	170	360	170	230
汚		水素イオン濃度	Ę.	6. 49	6. 48	6. 47	6.46	6. 50	6. 52	6. 47	6. 57	6. 42	6. 43	6. 43	6.44	6. 57	6.42	6. 47
泥返	機械濃縮	アルカリ度(mg	g/L)	64	59	59	71	74	72	83	65	66	59	54	53	83	53	65
流	機離	浮遊物質量(mg	g/L)	170	220	190	210	200	230	290	190	100	160	94	51	290	51	180
返流水試	縮	生物化学的酸素	要求量(mg/L)	130	140	110	130	120	150	150	97	94	100	44	36	150	36	110
験		化学的酸素要求	t量 (mg/L)	67	82	69	83	79	100	110	83	69	71	39	27	110	27	73
		水素イオン濃度	-	4. 95	4. 93	4.81	5. 12	5.00	4. 97	5. 06	4. 98	5. 03	5. 10	5. 10	5. 21	5. 21	4.81	5. 02
	₁₁₄ 分	アルカリ度(mg	g/L)	118	70	72	187	100	68	121	147	145	213	182	275	275	68	142
	脱 脱 水 液	浮遊物質量(mg	g/L)	920	830	1,500	670	2, 400	450	1, 400	620	670	820	570	600	2, 400	450	950
	* 液	生物化学的酸素等	要求量(mg/L)	3, 500	3,600	3,700	2, 100	1,600	1,600	1,900	2, 100	2, 200	3,000	3,800	3,600	3,800	1,600	2,700
		化学的酸素要求	全量 (mg/L)	780	740	950	600	540	490	510	580	590	700	720	820	950	490	670

表 5 - 4 0 汚泥測定結果(溶出試験)

項目	単 位	5月	8月	11月	2月	最 大	最 小	平均
カドミウム又はその化合物	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
シアン化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
有機燐化合物	mg/L	_	<0.1	_	<0.1	<0.1	<0.1	<0.1
鉛又はその化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
六価クロム化合物	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
砒素又はその化合物	mg/L	0.007	0.013	<0.005	0.019	0.019	<0.005	0.010
水銀又はその化合物	${\rm mg}/L$	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
アルキル水銀化合物	mg/L	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
ポリ塩化ビフェニル	${\rm mg}/L$	_	<0.0005	_	<0.0005	<0.0005	<0.0005	<0.0005
銅又はその化合物	${\rm mg}/L$	0.11	<0.10	0.11	0.15	0. 15	<0.10	<0.10
亜鉛又はその化合物	${\rm mg}/L$	1. 9	0.90	1.6	6. 7	6.7	0.90	2.8
鉄	${\rm mg}/L$	0.72	0.87	1.5	0.49	1.5	0.49	0.90
マンガン	${\rm mg}/L$	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
トリクロロエチレン	${\rm mg}/L$	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
テトラクロロエチレン	${\rm mg}/L$	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
ジクロロメタン	${\rm mg}/{\rm L}$	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
四塩化炭素	${\rm mg}/{\rm L}$	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
1,2-ジクロロエタン	mg/L	_	<0.004		<0.004	<0.004	<0.004	<0.004
1,1-ジクロロエチレン	mg/L	_	<0.02		<0.02	<0.02	<0.02	<0.02
シス-1, 2-ジクロロエチレン	${\rm mg}/{\rm L}$	_	<0.04	_	<0.04	<0.04	<0.04	<0.04
1, 1, 1-トリクロロエタン	${\rm mg}/{\rm L}$	_	<0.001	_	<0.001	<0.001	<0.001	<0.001
1,1,2-トリクロロエタン	mg/L	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
1, 3-ジクロロプロペン	${\rm mg}/{\rm L}$	_	<0.002	_	<0.002	<0.002	<0.002	<0.002
チウラム	${\rm mg}/L$	_	<0.006	_	<0.006	<0.006	<0.006	<0.006
シマジン	${\rm mg}/{\rm L}$	_	<0.003	_	<0.003	<0.003	<0.003	<0.003
チオベンカルブ	${\rm mg}/{\rm L}$	_	<0.02	_	<0.02	<0.02	<0.02	<0.02
ベンゼン	${\rm mg}/{\rm L}$	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
セレン又はその化合物	${\rm mg}/{\rm L}$	_	<0.01	_	<0.01	<0.01	<0.01	<0.01
1,4-ジオキサン	${\rm mg}/L$	_	<0.05	_	<0.05	<0.05	<0.05	<0.05

表 5 - 4 1 汚泥測定結果(含有試験)

項目	単 位	5月	8月	11月	2月	最 大	最 小	平 均
カドミウム	mg/kg	0.38	0. 42	0. 33	0. 21	0. 42	0. 21	0.34
シアン化合物	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
鉛	mg/kg	3. 4	5.5	3.8	3. 0	5. 5	3.0	3. 9
六価クロム	mg/kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
ひ素	mg/kg	2. 1	2.4	1.9	1. 6	2.4	1.6	2.0
水銀	mg/kg	0.07	0.11	0.10	0.09	0. 11	0.07	0.09
銅	mg/kg	250	160	150	180	250	150	190
ニッケル	mg/kg	28	7.8	7.0	9. 0	28	7. 0	13
亜鉛	mg/kg	2, 500	2,700	2, 400	4, 500	4, 500	2, 400	3,000
鉄	mg/kg	1, 900	1, 300	1, 400	1, 100	1,900	1, 100	1, 400
マンガン	mg/kg	21	18	19	17	21	17	19
クロム	mg/kg	84	16	12	24	84	12	34

表 5-42 放流河川調査結果 河川名:桂川(採水地点 金畑橋[放流口下流約450m])

	· 日	224 /44	4 / 1 1	E /15	0/10	7/11	0./0	0/10	10/10	11/00	35/14 III L/V			0 /10	F 1.	E I	77 lb
	項目	単 位	4/11	5/15	6/13	7/11	8/6	9/12	10/10	11/20	12/12	1/16	2/13	3/13	最大	最小	平均
	採水時刻		9:00	9:05	9:10	9:10	9:05	9:00	9:00	9:05	9:00	9:05	9:00	9:00	_	_	_
	水温	$_{\mathbb{C}}$	10. 0	14. 0	17. 0	20.0	23. 0	20.0	15. 0	10. 5	7. 0	5. 0	7. 0	10. 5	23. 0	5.0	13. 3
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	-	7. 26	7. 43	7. 45	7. 50	7. 75	7. 47	7. 41	7. 21	7. 34	7.48	7. 32	7. 39	7. 75	7. 21	7. 42
生	溶存酸素量	mg/L	11	11	9.8	9. 2	9.0	9.0	9. 9	11	12	12	12	11	12	9.0	11
活	生物化学的酸素要求量	mg/L	0. 7	0. 7	0. 9	0.6	0.9	0.5	0. 9	0.6	0.6	0. 7	0. 7	1.0	1. 0	0. 5	0. 7
環	化学的酸素要求量	mg/L	1.8	1. 9	1. 9	1. 5	1. 7	1.3	1. 7	1. 6	1. 3	1. 4	1. 2	1. 7	1. 9	1.2	1.6
境	浮遊物質量	mg/L	2. 1	1.8	1. 5	1. 0	2. 4	1.7	4. 2	3. 2	<1.0	<1.0	1.0	2. 1	4. 2	<1.0	1.8
項	大腸菌群数	個/cm³	4	2	1	8	4	7	10	13	1	1	2	2	13	1	5
目	窒素含有量	mg/L	0.82	0.69	0.65	0. 79	1. 11	0. 98	1.05	1.62	0.82	0.38	0. 99	0. 73	1. 62	0. 38	0.89
	燐含有量	mg/L	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
特	アンモニア性窒素含有量	mg/L	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	0.17	<0.16	<0.16	<0.16	<0.16	0. 17	<0.16	<0.16
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
項	硝酸性窒素含有量	mg/L	0.82	0.69	0.65	0. 62	0. 90	0. 98	1.05	1.20	0.82	0.38	0. 99	0. 57	1. 20	0. 38	0.81
目	燐酸イオン態燐含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

表 5-43 放流河川調査結果 河川名:桂川(採水地点 塩瀬橋[放流口上流約350m])

	項目	単 位	4/11	5/15	6/13	7/11	8/6	9/12	10/10	11/20	12/12	1/16	2/13	3/13	最大	最小	平均
_	採水時刻		9:15	9:20	9:20	9:25	9:20	9:15	9:20	9:25	9:15	9:20	9:15	9:15	_	_	_
	水温	$^{\circ}$ C	10.0	14. 0	17. 0	20. 0	23. 0	20.0	15.0	10.0	7. 0	5. 0	7. 0	10.0	23. 0	5.0	13. 2
般	透視度	cm	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
	水素イオン濃度	_	7. 28	7. 46	7. 48	7. 54	7. 68	7. 38	7. 34	7.04	7. 22	7. 45	7. 28	7. 30	7. 68	7. 04	7. 37
生	溶存酸素量	mg/L	11	11	9. 9	9. 3	9. 2	9. 0	9.8	11	12	13	12	11	13	9.0	11
活	生物化学的酸素要求量	mg/L	0. 7	0.7	0. 7	0. 5	0. 9	<0.5	0.7	0. 5	0.6	0.6	0.7	0.9	0.9	<0.5	0.6
環	化学的酸素要求量	mg/L	1. 6	1. 9	1. 7	1. 4	1. 3	1. 2	1.6	1. 5	1. 2	1. 1	1.0	1.6	1. 9	1.0	1.4
境	浮遊物質量	mg/L	1. 5	1. 6	1.8	1.0	2. 0	1. 4	3.8	3. 0	<1.0	<1.0	1. 1	2. 3	3.8	<1.0	1.6
項	大腸菌群数	個/cm ³	1	0	1	7	1	5	7	5	0	1	1	1	7	0	3
目	窒素含有量	mg/L	0.79	0.66	0. 55	0.82	0.74	0.89	0.98	1.05	0.81	0.42	0.67	0. 43	1. 05	0.42	0.73
	燐含有量	mg/L	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06
特	アンモニア性窒素含有量	mg/L	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16	<0.16
殊	亜硝酸性窒素含有量	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
項	硝酸性窒素含有量	mg/L	0. 79	0.66	0. 55	0. 53	0.74	0.89	0.98	1.05	0.81	0.42	0.67	0. 43	1. 05	0.42	0.71
目	燐酸イオン態燐含有量	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

表 5 - 4 4 臭気測定結果

項目	敷地	境界	
採取年月日	令和6年8月23日	令和7年2月13日	規制値
採取時刻	10:17	11:08	
臭気指数	<10	<10	15

項目	放流口排出水	
採取年月日	令和6年8月23日	規制値
採取時刻	10:30~10:32	
臭気指数	14	31

参考資料

水質試験等実施要領

1. 水質試験等実施内容

1) 水質関係

試!	· 験	項	目 /	試 験 回 数	試 料 名	試 験 項 目
					流入下水	水温、水素イオン濃度、
B	常	試	験	毎日	最初沈殿池流出水	透視度、浮遊物質量、
	书	八	映	# 口	最終沈殿池流出水	化学的酸素要求量、アルカリ度、
					放流水	残留塩素 (放流水のみ)
						日常試験と同様の項目、
中	絬	4	験	1回/週	日常試験に同じ	生物化学的酸素要求量、
						大腸菌群数
					流入下水	日常試験・中試験と同様の項目、
					放流水	栄養塩類項目(ア)、健康項目(イ)、
精	密	試	験	2回/月		生活環境項目(ウ)、蒸発残留物、
						強熱残留物、溶解性物質、
						よう素消費量
幹	線	調	查	1回/年	幹線行政境において採取した	水温、よう素消費量、
早十	形化	可可	11.	1四/ 平	下水	健康項目(イ)、生活環境項目(ウ)
					流入下水	水素イオン濃度、浮遊物質量、
诵	日	試	験	4回/年	放流水	生物化学的酸素要求量、
世	Н	卟	初火	4 四 / 十	(2時間おきの24時間採水)	化学的酸素要求量、
						大腸菌群数(放流水のみ)

[※]精密試験は、検出状況等により試験回数を減らしている項目がある。

2) 反応タンク関係

111111111111111111111111111111111111111	項目式験	試 験 回 数	試 料 名	試 験 項 目				
E	引 常 試 験	毎日	反応タンク混合液(出口) 返送汚泥	水温、水素イオン濃度、 MLSS、MLVSS、SV30、 SVI				
中	式 験	2回/月	反応タンク混合液 (出口)	酸素利用速度、生物定量試験				

参考資料

3) 汚泥関係

試	項目	試験回数	試 料 名	試 験 項 目
- H	告 3 段	毎日(ただし、脱水	脱水機供給汚泥	固形分(含水率)
日常試験		機稼働日に限る。)	脱水ケーキ	
			重力濃縮汚泥	水素イオン濃度(脱水ケーキを
中	試 験	2回/月	機械濃縮汚泥	除く)、固形分(含水率)、
	武	2 凹 / 月	脱水機供給汚泥	有機分
			脱水ケーキ	
			重力濃縮分離液	水素イオン濃度、浮遊物質量、
返	流水試験	2回/月	機械濃縮分離液	生物化学的酸素要求量、
			脱水分離液	化学的酸素要求量、アルカリ度
精	密 試 験	4回/年	脱水ケーキ	含有試験(エ)、溶出試験(オ)

4) 環境調査関係

試	 験	項	目 /	試 験 回 数	試 料 名	試 験 項 目
放	流	河	Ш	1回/月	放流河川等の上流、下流水	水温、透視度、溶存酸素、 栄養塩類項目(ア)、 生活環境項目(ウ)の一部
臭	気	測	定	2回/年	敷地境界	臭気指数
臭	気	測	定	1回/年 (桂川清流センターのみ)	放流水	臭気指数

参考資料

ア) 栄養塩類項目 : 窒素含有量、有機性窒素含有量、アンモニア性窒素含有量、

硝酸性窒素含有量、亜硝酸性窒素含有量、燐含有量、燐酸イオン態燐含有量

イ)健康項目:カドミウム及びその化合物、シアン化合物、有機燐化合物、

六価クロム化合物、鉛及びその化合物、砒素及びその化合物、

水銀及びアルキル水銀その他の水銀化合物、(アルキル水銀化合物)、

ポリ塩化ビフェニル、トリクロロエチレン、テトラクロロエチレン、

ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、

シス1,2-ジクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、

1,3-ジクロロプロペン、チウラム、シマジン、チオベンカルブ、ベンゼン、

セレン及びその化合物、ほう素及びその化合物、ふっ素及びその化合物、

アンモニア、アンモニウム化合物、亜硝酸化合物及び硝酸化合物、1,4-ジオキサン

ウ)生活環境項目 : 水素イオン濃度、浮遊物質量、生物化学的酸素要求量、化学的酸素要求量、

ノルマルヘキサン抽出物質含有量、大腸菌群数、フェノール類含有量、

銅含有量、亜鉛含有量、溶解性鉄含有量、溶解性マンガン含有量、クロム含有量、

窒素含有量、燐含有量

エ) 含有試験 : シアン化合物、鉄、マンガン、亜鉛、ニッケル、銅、鉛、カドミウム、

クロム、六価クロム、ひ素、水銀、含水率

オ) 溶出試験 : シアン化合物、鉄、マンガン、亜鉛又はその化合物、銅又はその化合物、

鉛又はその化合物、カドミウム又はその化合物、六価クロム化合物、

砒素又はその化合物、水銀又はその化合物、アルキル水銀化合物、

有機燐化合物、ポリ塩化ビフェニル、トリクロロエチレン、

テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、

1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、

1,1,2-トリクロロエタン、1,3-ジクロロプロペン、チウラム、シマジン、

チオベンカルブ、ベンゼン、セレン又はその化合物、1,4-ジオキサン

2. 水質試験等実施方法

1) 水質試験 (1/2)

水温	
透視度	
蒸発残留物	
蒸発残留物	
溶解性物質	
溶解性物質	
※ ※ ※ ※ ※ ※ ※ ※ ※ ※	
平ルカリ度	
世物化学的酸素要求量	
化学的酸素要求量 JIS K0102 (2019) 17 100℃における過マンガン酸法 アンモニア性窒素含有量 JIS K0102 (2019) 42. 2 インドフェノール青吸光光度法 亜硝酸性窒素含有量 JIS K0102 (2019) 43. 1. 1 ナフチルエチレンジアミン吸光光度法 硝酸性窒素含有量 JIS K0102 (2019) 43. 2. 1 還元-蒸留インドフェノール青吸光光度法 有機性窒素含有量 JIS K0102 (2019) 44. 2 インドフェノール青吸光光度法 変素含有量 JIS K0102 (2019) 44. 1 老和法 燐酸イオン態燐含有量 JIS K0102 (2019) 45. 1 総和法 燐酸イオン態燐含有量 JIS K0102 (2019) 46. 1. 1 モリブデン青吸光光度法 横含有量 JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法 大腸菌群数 S37 厚・建令 1 号別表 1 よう素消費量 S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法 ノルマルヘキサン抽出物質含有量 JIS K0102 (2019) 38. 3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 フェノール類含有量 JIS K0102 (2019) 38. 3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 サニノール類含有量 JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12 溶解性鉄含有量 JIS K0102 (2019) 57. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 57. 4 乙過後 植酸性で TCP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 ろ過後 塩酸酸性で TCP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 ろ過後 塩酸酸性で TCP 発光分光分析法(峡東※2024. 12 済解性マンガン含有量 JIS K0102 (2019) 56. 2 ろ過後 塩酸酸性で TCP 発光分光分析法(峡東※2024. 12 済解性マンガン含有量 JIS K0102 (2019) 56. 2 ろ過後 塩酸酸性で TCP 発光分光分析法(峡東※2024. 12 済解性マンガン含有量 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 済解性マンガン含有量 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 3 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 3 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 3 ろ過後 値酸性で TCP 発光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 3 ろ過後 値酸性で TCP 発光分光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値酸性で TCP 発光分析法(峡東※2024. 12 JIS K0102 (2019) 56. 4 ろ過後 値域は 基本分析表 (2019) 56. 2 ろ過後 値域は 基本分析表 (2019) 56. 4 ろ過後 恒極 大田 (2019) 56. 4 ろ過後 恒極 (
アンモニア性窒素含有量 JIS K0102 (2019) 42. 2 インドフェノール青吸光光度法 亜硝酸性窒素含有量 JIS K0102 (2019) 43. 1. 1 ナフチルエチレンジアミン吸光光度法 硝酸性窒素含有量 JIS K0102 (2019) 43. 2. 1 還元-蒸留インドフェノール青吸光光度法 有機性窒素含有量 JIS K0102 (2019) 44. 2 インドフェノール青吸光光度法 窒素含有量 JIS K0102 (2019) 45. 1 総和法 燐酸イオン態燐含有量 JIS K0102 (2019) 46. 1. 1 モリブデン青吸光光度法 燐含有量 JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法 大腸菌群数 S37 厚・建令 1 号別表 1 よう素消費量 S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法 ノルマルヘキサン抽出物質含有量 S49 環境庁告示 64 付表 4 シアン化合物 JIS K0102 (2019) 38. 3 4ーピリジンカルボン酸ーピラゾロン吸光光度法 フェノール類含有量 JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法 サ含有量 JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12 溶解性鉄含有量 JIS K0102 (2019) 57. 2 ろ過後塩酸酸性で ICP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 石過後塩酸酸性でフレーム原子吸光光度法 JIS K0102 (2019) 56. 4 石過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 4 5 3 3 3 4 5 3 3 4 5 3 3 3 4 5 3 3 3 4 5 3 3 3 4 5 3 3 3 3	
理硝酸性窒素含有量	
研酸性窒素含有量 JIS K0102 (2019) 43. 2. 1 還元-蒸留インドフェノール青吸光光度法 有機性窒素含有量 JIS K0102 (2019) 44. 2 インドフェノール青吸光光度法 窒素含有量 JIS K0102 (2019) 45. 1 総和法 燐酸イオン態燐含有量 JIS K0102 (2019) 46. 1. 1 モリブデン青吸光光度法 燐含有量 JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法 大腸菌群数 S37 厚・建令 1 号別表 1 よう素消費量 S49 環境庁告示 64 付表 4 シアン化合物 JIS K0102 (2019) 38. 3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 フェノール類含有量 JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法 鉄含有量 JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12 溶解性鉄含有量 JIS K0102 (2019) 57. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 4 石過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12 アンガン含有量 JIS K0102 (2019) 56. 3 石過後福酸酸性で TCP 発光分光分析法(峡東※2024. 12	
有機性窒素含有量JIS K0102 (2019) 44. 2 インドフェノール青吸光光度法窒素含有量JIS K0102 (2019) 45. 1 総和法燐酸イオン態燐含有量JIS K0102 (2019) 46. 1. 1 モリブデン青吸光光度法燐含有量JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法大腸菌群数S37 厚・建令 1 号別表 1よう素消費量S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法ノルマルヘキサン抽出物質含有量S49 環境庁告示 64 付表 4シアン化合物JIS K0102 (2019) 38. 3 4ーピリジンカルボン酸ーピラブロン吸光光度法フェノール類含有量JIS K0102 (2019) 28. 1. 2 4ーアミノアンチピリン吸光光度法鉄含有量JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性鉄含有量JIS K0102 (2019) 57. 2 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12マンガン含有量JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 2 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 2 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 ICP 発光分光分析法(峡東※2024. 12	
燐酸イオン態燐含有量JIS K0102 (2019) 46. 1. 1 モリブデン青吸光光度法燐含有量JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法大腸菌群数S37 厚・建令 1 号別表 1よう素消費量S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法ノルマルヘキサン抽出物質含有量S49 環境庁告示 64 付表 4シアン化合物JIS K0102 (2019) 38. 3 4ーピリジンカルボン酸ーピラゾロン吸光光度法フェノール類含有量JIS K0102 (2019) 28. 1. 2 4ーアミノアンチピリン吸光光度法鉄含有量JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12溶解性鉄含有量JIS K0102 (2019) 57. 2 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12マンガン含有量JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 2 る過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 2 る過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後フレーム原子吸光光度法JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後フレーム原子吸光光度法JIS K0102 (2019) 53. 3 硝酸による分解後 TCP 発光分光分析法(峡東※2024. 12	
焼含有量JIS K0102 (2019) 46. 3. 1 ペルオキソニ硫酸カリウム分解法大腸菌群数S37 厚・建令 1 号別表 1よう素消費量S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法ノルマルヘキサン抽出物質含有量S49 環境庁告示 64 付表 4シアン化合物JIS K0102 (2019) 38. 3 4ーピリジンカルボン酸ーピラゾロン吸光光度法フェノール類含有量JIS K0102 (2019) 28. 1. 2 4ーアミノアンチピリン吸光光度法鉄含有量JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12溶解性鉄含有量JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性鉄含有量JIS K0102 (2019) 57. 4 乙過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12マンガン含有量JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 2 乙過後塩酸酸性でフレーム原子吸光光度法が解性マンガン含有量JIS K0102 (2019) 56. 4 ろ過後硝酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で TCP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 3 硝酸・塩酸による分解後 TCP 発光分光分析法(峡東※2024. 12	
大腸菌群数S37 厚・建令 1 号別表 1よう素消費量S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法ノルマルヘキサン抽出物質含有量S49 環境庁告示 64 付表 4シアン化合物JIS K0102 (2019) 38. 3 4ーピリジンカルボン酸ーピラゾロン吸光光度法フェノール類含有量JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法鉄含有量JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後フレーム原子吸光光度法JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性鉄含有量JIS K0102 (2019) 57. 2 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12マンガン含有量JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後フレーム原子吸光光度法JIS K0102 (2019) 56. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 4 ろ過後塩酸酸性でフレーム原子吸光光度法JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後フレーム原子吸光光度法JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12	
よう素消費量 S37 厚・建令 1 号別表 2 チオ硫酸ナトリウム法 ノルマルヘキサン抽出物質含有量 S49 環境庁告示 64 付表 4 シアン化合物 JIS K0102 (2019) 38. 3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 フェノール類含有量 JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法 鉄含有量 JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 溶解性鉄含有量 JIS K0102 (2019) 57. 2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で ICP 発光分光分析法 (峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 溶解性マンガン含有量 JIS K0102 (2019) 56. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 運鉛含有量 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で ICP 発光分光分析法 (峡東※2024. 12 更鉛含有量 JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 JIS K0102 (2019) 53. 3 硝酸による分解後 ICP 発光分析法 (域東東 ※2024. 12 JIS K0102 (2019) 53. 3 硝酸 ICP 系元分析表 (基本分析法	
ファン化合物 JIS K0102 (2019) 38. 3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 フェノール類含有量 JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法 鉄含有量 JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法(峡東※2024. 12 溶解性鉄含有量 JIS K0102 (2019) 57. 4 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024. 12 マンガン含有量 JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 JUーム原子吸光光度法 JIS K0102 (2019) 56. 4 硝酸による分解後 JUーム原子吸光光度法 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で JUーム原子吸光光度法 JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で JUーム原子吸光光度法 JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 JUーム原子吸光光度法 JIS K0102 (2019) 53. 3 硝酸による分解後 JUーム原子吸光光度法 JIS K0102 (2019) 53. 3 硝酸による分解後 JUーム原子吸光光度法 JIS K0102 (2019) 53. 3 硝酸による分解後 JUーム原子吸光光度法	
フェノール類含有量 JIS K0102(2019)38.3 4-ピリジンカルボン酸-ピラゾロン吸光光度法 サ含有量 JIS K0102(2019)28.1.2 4-アミノアンチピリン吸光光度法 鉄含有量 JIS K0102(2019)57.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)57.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性鉄含有量 JIS K0102(2019)57.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)57.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 マンガン含有量 JIS K0102(2019)56.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性マンガン含有量 JIS K0102(2019)56.4 ろ過後硝酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 亜鉛含有量 JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後フレーム原子吸光光度法	
フェノール類含有量JIS K0102 (2019) 28. 1. 2 4-アミノアンチピリン吸光光度法鉄含有量JIS K0102 (2019) 57. 2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102 (2019) 57. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12 溶解性鉄含有量溶解性鉄含有量JIS K0102 (2019) 57. 2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102 (2019) 57. 4 ろ過後硝酸酸性で ICP 発光分光分析法 (峡東※2024. 12マンガン含有量JIS K0102 (2019) 56. 2 硝酸・塩酸による分解後 JCP 発光分光分析法 (峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2024. 12溶解性マンガン含有量JIS K0102 (2019) 56. 4 ろ過後硝酸酸性で JCP 発光分光分析法 (峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 1 硝酸・塩酸による分解後 JCP 発光分光分析法 (峡東※2024. 12亜鉛含有量JIS K0102 (2019) 53. 3 硝酸による分解後 JCP 発光分光分析法 (峡東※2024. 12	
鉄含有量JIS K0102(2019)57.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)57.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性鉄含有量JIS K0102(2019)57.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)57.4 ろ過後硝酸酸性でICP 発光分光分析法(峡東※2024.12 マンガン含有量マンガン含有量JIS K0102(2019)56.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性マンガン含有量溶解性マンガン含有量JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 更新含有量亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	
JIS K0102(2019)57.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性鉄含有量 JIS K0102(2019)57.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)57.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 マンガン含有量 JIS K0102(2019)56.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 溶解性マンガン含有量 JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 亜鉛含有量 JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 単鉛含有量 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(岐東※2024.12 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(岐東※2024.12 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(岐東※2024.12 JIS K0102(2019)53.3 JIS K0102(
万IS K0102(2019)57.2 ろ過後塩酸酸性でフレーム原子吸光光度法)
JIS K0102(2019)57.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12マンガン含有量JIS K0102(2019)56.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12溶解性マンガン含有量JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	<u>~)</u>
マンガン含有量JIS K0102(2019)56.2 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12溶解性マンガン含有量JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	~)
JIS K0102(2019)56.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12溶解性マンガン含有量JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	-)
溶解性マンガン含有量 JIS K0102(2019)56.2 ろ過後塩酸酸性でフレーム原子吸光光度法 JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12 亜鉛含有量 JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	~)
JIS K0102(2019)56.4 ろ過後硝酸酸性で ICP 発光分光分析法(峡東※2024.12亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	/
亜鉛含有量JIS K0102(2019)53.1 硝酸・塩酸による分解後フレーム原子吸光光度法 JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	~)
JIS K0102(2019)53.3 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	
	~)
別日日里	
JIS K0102(2019)52.4 硝酸による分解後 ICP 発光分光分析法(峡東※2024.12	~)
新及びその化合物 JIS K0102 (2019) 54.2 硝酸による分解後電気加熱原子吸光光度法	
JIS K0102 (2019) 54.3 硝酸による分解後 ICP 発光分光分析法(峡東※2025.2~	·)
カドミウム及びその化合物 JIS K0102(2019)55.2 硝酸による分解後電気加熱原子吸光光度法	
JIS K0102 (2019) 55.3 硝酸による分解後 ICP 発光分光分析法(峡東※2025.2~	ا (
クロム含有量 JIS K0102 (2019) 65. 1. 3 硝酸による分解後電気加熱原子吸光光度法	
JIS K0102 (2019) 65. 1. 4 硝酸による分解後 ICP 発光分光分析法 (峡東※2025.	?∼)
六価クロム化合物JIS K0102 (2019) 65. 2. 3 電気加熱原子吸光光度法	
JIS K0102 (2019) 65. 2. 4 ICP 発光分光分析法(峡東※2024. 12~)	
砒素及びその化合物 JIS K0102 (2019) 61.2 水素化物発生原子吸光光度法	
JIS K0102 (2019) 61. 3 水素化物発生 ICP 発光分光分析法(峡東※2024. 12~)	
水銀及びアルキル水銀 S46 環境庁告示 59 付表 2 還元気化原子吸光光度法	
その他の水銀化合物	
トリクロロエチレン JIS K0125(2016)5.5 溶媒抽出ガスクロマトグラフ法(峡東、釜無)	$\overline{}$
JIS K0125 (2016) 5. 4. 1 ヘッドスペース・ガスクロマトグラフ法(ECD) (北麓、木	
テトラクロロエチレン	:///
JIS K0125 (2016) 5. 4. 1 ヘッドスペース・ガスクロマトグラフ法(ECD) (北麓、木	<u> </u>

(2/2)

	(2/2)
試 験 項 目	試 験 方 法
アルキル水銀化合物	S46 環境庁告示 59 付表 3 ガスクロマトグラフ法(ECD)
有機燐化合物	S49 環境庁告示 64 付表 1 ガスクロマトグラフ法(FPD)
ポリ塩化ビフェニル	S46 環境庁告示 59 付表 4 ガスクロマトグラフ法(ECD)
ジクロロメタン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
四塩化炭素	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
1, 2-ジクロロエタン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
1,1-ジクロロエチレン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
シス 1, 2-ジクロロエチレン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
1,1,1-トリクロロエタン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
1,1,2-トリクロロエタン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
1, 3-ジクロロプロペン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
チウラム	S46 環境庁告示 59 付表 5 固相抽出・高速液体クロマトグラフ法
シマジン	S46 環境庁告示 59 付表 6 固相抽出・ガスクロマトグラフ質量分析法
チオベンカルブ	S46 環境庁告示 59 付表 6 固相抽出・ガスクロマトグラフ質量分析法
ベンゼン	JIS K0125(2016)5.2 ヘッドスペース・ガスクロマトグラフ質量分析法
セレン及びその化合物	JIS K0102(2019)67.2 水素化合物発生原子吸光光度法
ほう素及びその化合物	JIS K0102(2019)47.2 アゾメチンH吸光光度法
	JIS K0102(2019)47.3 ICP 発光分光分析法(峡東※2024.12~)
ふっ素及びその化合物	JIS K0102(2019)34.1 ランタン-アリザリンコンプレキソン吸光光度法
アンモニア、アンモニウム化合物、	JIS K0102(2019)42.2 インドフェノール青吸光光度法
亜硝酸化合物及び硝酸化合物	JIS K0102(2019)43.2.1 還元-蒸留インドフェノール青吸光光度法
1,4-ジオキサン	S46 環境庁告示 59 付表 8 第 3 ヘッドスペース・ガスクロマトグラフ質量分析法
溶存酸素	JIS K0102(2019)32.3 隔膜電極法(北麓、釜無、桂川)
	JIS K0102(2019)32.4 光学式センサ法(峡東)
残留塩素	JIS K0102(2019)33.2 DPD比色法
MLSS	下水試験方法(2012)4.1.6 遠心分離法
MLVSS	下水試験方法(2012)4.1.7

参考資料

2) 汚泥試験

	含 有 試 験
試 験 項 目	試 験 方 法
カドミウム	下水汚泥分析方法(2007) 9.6.1 9.6.2(峡東※2025.2~)
シアン化合物	下水試験方法(2012) 5.1.25
鉛	下水汚泥分析方法(2007) 9.23.1 9.23.2(峡東※2025.2~)
六価クロム	下水試験方法(2012) 3.2.4
ひ素	下水汚泥分析方法(2007) 9.2.2 9.2.3(峡東※2025.2~)
水銀	下水汚泥分析方法(2007) 9.14.1
銅	下水汚泥分析方法(2007) 9.11.1 9.11.2(峡東※2025.2~)
ニッケル	下水汚泥分析方法(2007) 9.21.1 9.21.2(峡東※2025.2~)
亜鉛	下水汚泥分析方法(2007) 9.30.1 9.30.2(峡東※2025.2~)
鉄	下水汚泥分析方法(2007) 9.13.2 9.13.3(峡東※2025.2~)
マンガン	下水汚泥分析方法(2007) 9.17.1 9.17.2(峡東※2025.2~)
クロム	下水汚泥分析方法(2007) 9.9.1 9.9.2(峡東※2025.2~)
含水率	下水試験方法(2012) 5.1.6
試 験 項 目	試験方法
カドミウム又はその化合物	JIS K0102(2019) 55.2 55.3(峡東※2025.2~)
シアン化合物	JIS K0102 (2019) 38.3
有機燐化合物	S49 環境庁告示 64 付表 1
鉛又はその化合物	JIS K0102(2019) 54.2 54.3(峡東※2025.2~)
六価クロム化合物	JIS K0102 (2019) 65. 2. 3 65. 2. 4 (峡東※2025. 2~)
砒素又はその化合物	JIS K0102 (2019) 61.2 61.3 (峡東※2025.2~)
水銀又はその化合物	S46 環境庁告示 59 付表 2
アルキル水銀化合物	S46 環境庁告示 59 付表 3
ポリ塩化ビフェニル	S46 環境庁告示 59 付表 4
銅又はその化合物	JIS K0102(2019) 52.2 52.4(峡東※2025.2~)
亜鉛又はその化合物	JIS K0102(2019) 53.1 53.3(峡東※2025.2~)
鉄	JIS K0102(2019) 57.2 57.4(峡東※2025.2~)
マンガン	JIS K0102(2019) 56.2 56.4(峡東※2025.2~)
トリクロロエチレン	JIS K0125(2016) 5.5(峡東、釜無) 5.4.1(北麓、桂川)
テトラクロロエチレン	JIS K0125(2016) 5.5(峡東、釜無) 5.4.1(北麓、桂川)
ジクロロメタン	JIS K0125 (2016) 5. 2
四塩化炭素	JIS K0125 (2016) 5. 2
1,2-ジクロロエタン	JIS K0125 (2016) 5. 2
1,1-ジクロロエチレン	JIS K0125 (2016) 5.2
シス-1, 2-ジクロロエチレン	JIS K0125 (2016) 5. 2
1, 1, 1-トリクロロエタン	JIS K0125 (2016) 5. 2
1, 1, 2-トリクロロエタン	JIS K0125 (2016) 5. 2
1, 3-ジクロロプロペン	JIS K0125 (2016) 5.2
チウラム	S46 環境庁告示 59 付表 5
シマジン	S46 環境庁告示 59 付表 6
チオベンカルブ	S46 環境庁告示 59 付表 6
ベンゼン	JIS K0125 (2016) 5.2
セレン又はその化合物	JIS K0102(2019) 67.2
1, 4-ジオキサン	S46 環境庁告示 59 付表 8 第 3

参考資料

3) 臭気測定

分析項目	分析 方法
臭気指数(敷地境界)	H7 環境庁告示第 63 号別表
关刈疳数 (三点比較式臭袋法
臭気指数(放流口排出水)	H7 環境庁告示第 63 号別表
关 从 相 数 (三点比較式フラスコ法

維持管理年報(令和6年度版)

令和7年9月発行 公益財団法人 山梨県下水道公社

事務局・峡東浄化センター

〒406-0046 山梨県笛吹市石和町東油川字北畑417番地 電話 055-263-2738 FAX 055-263-2738

富士北麓浄化センター

〒403-0008 山梨県富士吉田市下吉田東四丁目 2 6 番 1 号 電話 0555-22-2259 FAX 0555-22-2188

釜無川浄化センター

〒400-0505 山梨県南巨摩郡富士川町長澤1790番地 電話 0556-22-8511 FAX 0556-22-8513

桂川清流センター

〒409-0505 山梨県大月市梁川町塩瀬800番地 電話 0554-26-3401 FAX 0554-26-3403

ホームページアドレス https://www.yamanashi-swc.or.jp/ 電子メールアドレス webmaster@yamanashi-swc.or.jp